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ABSTRACT

This paper considers the time-invariant linear
quadratic regulator problem with varying finite time
durations. It is shown that driving the state of a system
along the same optimal trajectory but over a different time
horizon requires a single Riccati gain matrix that is shifted
appropriately in time. This result has significant
ramifications for real-time implementation of optimal control
systems.

INTRODUCTION

In the linear quadratic regulator problem one seeks
the control law that drives a dynamic system from some
initial state to a constant terminal state. This problem is
typically cast using Pontriyagin’s minimum principle as a
two-point boundary-value problem, where the state initial
condition and co-state terminal condition are known. The
solution of this problem in terms of the matrix differential
Riccati equation is reported widely in the literature, and is
developed in most modern control textbooks that present
optimal control theory, e.g. (Sage and White, 1977; Owens,
1981, Nagrath and Gopali, 1983 Friedland, 1986).

Most often, the textbook presentations demonstrate
the effect of increasing the terminal time and show the
limiting case leading to the infinite-time regulator problem.
For this case, the Riccati equation is reduced to the
algebraic or steady-state matrix Riccati equation. The
textbook presentations typically neglect discussion of the
regulator problem when the terminal time, or time duration,
assumes varying finite values. By default, it is presumed
that in such cases the Riccati equation must be resolved for
each problem with a unique terminal time or time interval.

This paper considers the time-invariant linear
quadratic regulator problem with varying finite time
durations. It is shown that varying the regulator’s time
duration does not require repeated calculations of the
matrix Riccati equation. The main result of this paper can
be summarized as follows: Driving the state of a system
along the same optimal trajectory but over a different time
horizon (or, equivalently, at a different speed) requires only
a single feedback gain matrix that is shifted appropriately in
time. In other words, once the Riccati equation is solved for
a given time duration, it is not ‘necessary to resolve it for a
new problem with a different (shorter) time duration; the
Riccati gain matrix can be obtained directly via a simple
time-shift of the original Riccati matrix. This succinct result
is not highlighted in the literature, and has significant

ramifications for real-time implementation of optimal control
systems driven at various speeds, as borne out by a real-
world example presented below.

ACKGROUND

In a linear quadratic regulator problem, the system'is
represented by a linear differential equation and the
performance index is a quadratic functional of the state and
control variables. Consider a system with dynamics that
can be captured by the linear, time-invariant state equation

Xt = A x®) + B ul) ()

where the state x(t) € R, the control u(t) € R™, and the
system matrix A and the control influence matrix B are
dimensioned appropriately. Let the performance index be

tf
=3xS x®+ [ 3 xT0 @ x0+JuT0 R ut)+

%
-~ XT(t) N u(®)] dt 2)

One seeks the control u(t) that drives the system from an
initial state (x(to)) to a final state (x(tr)) while minimizing the
performance index J. The solution of this linear quadratic
regulator problem is known to have a closed-loop control
form, where u(t) is expressed as a time weighted linear
combination of x(t)

ult) = Ka(t) x(t) v @

Th_e elements of matrix Kg(t) are feedback coefficients or
gains of the state variables. The matrix, referred to as the
Riccati gain matrix (in some books, the Kalman gain matrix),
can be expressed as: e

Kalt) = RIANT+BTPE] (g

In equation (4) P(t)is a (nxn) symmetric matrix that satisfies
the matrix differential Riccati equation:

P(t) = P)BR1BT P() - P(t)A- B R-INT] +
[NR1BT-ATIP(t) + NRINT + Q (5)

with terminal condition:
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Since the Riccati gain matrix, Kgr(t), is independent
of the state boundary conditions, it can be calculated off-
line. This is a very attractive feature for real-time control
applications.

Another important property of Kr(t), with significant
implications for real-time control, is the fact that it captures
the complete character of the optimal trajectory solution for
the time interval (i - to) and any shorter interval.

INEAR
DURATION
Consider a Riccati gain matrix, Kg(t), that drives the
state of the system (A, B) from x(tp) to x(t) in time interval (t
- tp). Let KR(t) be the Riccati gain matrix that drives the
state of the same system (A, B) along the same optimal

trajectory in a different time interval (t - to) (where t¢ <t).

GULATOR WITH VARYIN TIME

Lemma: “The Riccati gain matrix, Kg(t)), is a subset of
the gain matrix Kg(t), or Kr(t) € Kgft).
Proof: The Riccati gain matrices, Kg(t) and KR(t), are

derived from equations (4), (5), and (6) and
are determined by the quantities (A, B, Q, R,
N, S). Atthe terminal times, t and f, the two
gain functions have identical values:

Kr(t) = Kglt) = -R-1INT+BTS] W)

Since the matrix Riccati equation (5) is solved
by integration backwards from the terminal
time, the gain matrix for given (A, B, Q, R, N,
S) at any time t is a function of the time, T,
remaining to complete the desired state
trajectory, where t=1{s - t. Therefore,

Kat) = Kg) ®)

when the same remaining time intervals exist
for the completion of the desired state
trajectory, or when

t=t-rand t=t-1 Hence, since
t <t the Riccati gain matrix Kg(t') is a subset
of Kgit).

Proposition: Let Kr(t) be the Riccati gain matrix that
optimally drives the state of the system (A, B)
from x(to) to x(ts) in time interval (t;- tp). The
Riccati gain matrix Kp'g that drives the state
along the same optimal trajectory in time

interval (t - to) (Where t; < ;) can be expressed
as:

Kat) = Kglt + @ - t) )
where HH<t<¥

This result expresses a very simple, yet important, property
of the Riccati gain matrix. It enables the state of the system
(A, B) to be driven along its optimal trajectory at various
speeds while utilizing a single Riccati gain matrix with an
appropriate time shift manipulation (equation (9)).

EXAMPLE
EXAMPLE 1:

_ This example is adapted from (Sage and
White, 1977, Example 5.1-1). The system is describgd by:

M) = -3 ) + ul)

The performance index is:
tf ‘ .
J =J [x2 + 51 u?] dt

The Riccati gain Kr(t) for this scalar system is found to be:

Ka) = 3 + 5 tanh (1.5(4-1) - 0.346)

The time histories of KR(t) for t = 1 sec and = 10 sec are
shown in Figure 1. Let Kr(t) be the Riccati gain for t = 1

sec, and Kgi(t) be the gain for = 10 sec. Then Kg (t) is a
subset of Kg(t) and can be expressed as:

Krt) = Kglt - 9) for 0<t<1

This simple time shift manipulation can be used for
evaluating the Riccati gain that drives the system state
through its optimal trajectory at higher speeds. This resultis
not reported explicitly (to the authors’ knowledge) in the
open literature. 1t is, however, validated by inspection of
figures, such as Figure 1, showing the Riccati gain for
different terminal times. The importance of this seemingly
standard observation is demonstrated in Example 2, where
it is embedded in a practical control system design.

tr=10sec

- Kal#)

i ! i ! 1 1 1 1
2 3 4 5 6 7 8 9 10

Time, seconds

Figure 1. Riccati gain functions for terminal times of 1
and 10 sec. Adopted from (Sage, White,
1977, example 5.1-1).
E

The second example considers a practical
electromechanical system, the Penn State electric
ventricular assist device (EVAD), shown in Figure 2. A
model of this EVAD together with a mook loop circulatory
'system, shown in Figure 3, is derived in (Tasch, et. al.,

1989).

) The EVAD may operate in a loaded or
unloaded mode. In the loaded mode, corresponding to the
systolic condition, the pusher plate (see Figure 2) moves
against a blood sac to eject blood and generate cardiac

- output. -In the unloaded mode, or diastole, the pusher plate
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" Figure 2. A Cross Section of The Cam Type Penn State

Electric Ventricular Assist Device (EVAD).

. Figure 3. A Photograph of The EVAD together with a

Mock Loop Circulatory System.
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retracts to allow the sac to fill. The system has been
modelled as having a single input and four state variables.

-~ The state equations in systole are:

0 g B8 D 17

) 0 -19.37 9.3 :

x(t) = { 0 320 -0.75 0.75] xt) + { 0 } u(®)
0 0 021 -0.21 0 ;

The performance index is:

10 0 0 O
0o 1

=%KT(tf){ Al 8] x(t)+
0o 0 OO

& 0
J [ 0.204 u(tR +xT(t) [ "0863} ut) 1at

where the value of t is varied to adjust the EVAD’s beat
rate. For 50 beats per minute (bpm) and 50% systolic
duration ¥ is set to 0.6 sec. For 100 bpm (50% systolic
duration) & is 0.3 sec. The time histories of the Riccati gains
for 50 bpm, KRg(t), and for 100 bpm, KR(t), are shown in
Figure 4. These can be determined by integrating
backwards the Riccati equation for each desired beat rate,
or by using the main resutt of this paper. In this example
Krt) = Kg(t - 0.3) for 0 <t<0.3 sec
Furthermore, the Riccati gains of faster beat rates are
subsets of the 50 bpm gains, and therefore the simple time-
shift manipulation, expressed in equation (), generates the
Riccati gains that drive the EVAD in any desired beat rate.
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" Figwed.  The Riccati Gain Matrices that Drive The
T9Ue S EVAD at 50 and 100 (bpm).

102




DISCUSSION

Once optimal state and control trajectories have
been computed for a linear quadratic regulator problem, it
may be desirable to generate other optimal trajectories for
the same problem but with different time intervals.
Variations in time intervals, corresponding to changes in
"speed”, alter the state and control histories. While the
original computations, namely the backwards integration of
the Riccati equation, could be repeated for problems with
different time intervals, there is a simpler way to determine
the new optimal trajectories. Time-shift manipulations of the
original Riccati gain matrix give the appropriate gain
matrices directly.

This simple result is applicable only to time-invariant
problems. For the time-varying case, equation (7) does not
hold. For problems with time-varying systems and/or time-
varying performance index, the Riccati gain matrix must be
determined by solving the Riccati equation.

The main result of the linear regulator design, as
presented above, assumes continuous time system,
although a similar development readily follows for discrete
time systems. (The discrete time exposition is not
presented here.) The implementation of optimal control
systems is based on digital computer control system logic.
For example, the controller of Example 2 was built on such
a sampled-data discrete time system. A sampled-data
control law using a discrete time Riccati gain matrix,
analogous to equation (9), was implemented and used to
determine the optimal discrete-time trajectory. {(Note: In
such a system the control is held constant during each

~sampling interval. The resulting trajectory is close to the
continuous-time optimum if the nominal control
- approximates its average value in the interval.)

Since the solution of the Riccati equation is
guaranteed to be stable with infinite gain margin and 60°
phase margin (Skelton, 1988), the time-shift technique

- advocated here is also stable for these conditions.

NCLUSION

For the linear quadratic regulator problem, the
optimal feedback law is linear and involves the solution of
the Riccati equation. This paper shows that for time-
invariant problems with finite but varying time intervals
multiple solutions of the Riccati equation are not necessary.
Rather, a more expeditious approach is to solve the Riccati
equation once for a given time interval and then use time-
shift manipulations of this Riccati gain matrix for all
subsequent problems with different (shorter) time intervals.
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