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Linear Quadratic Regulator With Varying Finite Time
Durations

Uri Tasch! and Mark L. Nagurka®

The optimal state trajectories of time-invariant linear quadratic
regulator problems with different time horizons can be found
Jfrom a single Riccati gain matrix shifted appropriately in time.
This result has significant ramifications for real-time imple-
mentation of optimal controllers driving systems at various
speeds.

Introdution

In the linear quadratic regulator problem, one seeks the
control law that optimally drives a dynamic system from some
initial state to a constant terminal state. The solution of this
problem, credited to Kalman (1960, 1964), is cast in the terms
of the matrix differential Riccati equation and is reported
widely in the literature (e.g., Kirk, 1970; Kwakernaak and
Sivan, 1972; Bryson and Ho, 1975; Sage and White, 1977;
Owens, 1981; Friedland, 1986; Lewis, 1986). Most presenta-
tions demonstrate the effect of increasing the terminal time,
and show the limiting case of the infinite-time regulator prob-
lem for which the Riccati equation is reduced to its algebraic
form. Typically not addressed are multiple finite-time regulator
problems where the terminal time, or time duration, is ad-
justed.

This technical note considers the time-invariant linear quad-
ratic regulator problem with varying finite time durations. It
is shown that the solutions of these finite time regulator prob-
lems do not require repeated calculations of the matrix dif-
ferential Riccati equation. The main result of this paper can
be summarized as follows: Driving the state of a system along
the same optimal trajectory but over a shorter time horizon
(or, equivalently, at a faster speed) requires computing a single
feedback gain matrix that can be shifted appropriately in time.
This result does not appear to be highlighted in the literature,
and is important for real-time implementation of optimal con-
trol systems driven at various speeds, as borne out by a real-
world example presented blow.
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Technical Briefs

Background

Consider a linear quadratic regulator problem with the sys-
tem

X () =Ax(t) +Bu(s) (0))

where x(£)e®R”, u(f)e®™, and A and B are dimensioned appro-
priately. The performance index is

i
=% X (t)Sx(t)) + S [% xT(8)Qx(1)

o
+1uT(t)R T
5 u() +xT(ONu(?) |dt  (2)

where definiteness conditions exist on the weighting matrices
S, Q, R, and N. The problem is to determine the control u(?)
that drives the system in finite time, fy<t<t;, from an initial
state, (%), to a final state, x(f), that minimizes the perform-
ance index J. The solution assumes a closed-loop control form,
where u(f) is expressed as

u(r) =Kz (£)x(1) 3)
Kg(?) is the Riccati gain matrix
K (t)= —R'INT+BP(1)] 7))

where P(f) is a (nxn) symmetric matrix that satisfies the matrix
Riccati equation

P(t)=P(t)BR™'B’P(f) —P(f)[A-BR"'N7)
+[NR™'B"=ATIP(1) +NRT'N"+Q (5
with terminal condition
P(¢)=S (6)

Since Kg(#) is independent of the state boundary conditions,
it can be calculated off-line and stored for table look-up. This
feature is exploited often for real-time control applications.
Another important property of Kg(#) is that it captures the
complete character of the optimal trajectory solution for the
interval £,— f; and any shorter time interval.

Linear Regulator With Varying Finite Time

Consider a Riccati gain matrix, Kz(?), that drives the state
of the system (A, B) from x(¢y) to x(tf) in time interval £;— f,.
Let Kz(t') be the Riccati gain matrix that transfers the state
of the system (A, B) along the same optimal trajectory in a
shorter time interval tf to, where tf <ty It can be shown that
the Riccati gain matrix, KR(t ), lies on the trajectory of the
gain matrix Kg(f), i.e., KR(t )eKRr ().

To show that this is true note from Egs. (4)-(6) that the
Riccati gain matrices, K(f) and Kx(t' ), are determined from
the system (A, B) and performance mdex weighting (S, Q, R,
N). At the terminal times #; and #;, the two gain functions
have identical values
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Kx(t7) =Kr(fy) = —R™'["+BS) )
Since the matrix Riccate Eq. (5) is solved by integration
backwards from the terminal time, the gain matrix for given
(A, B, S, Q, R, N) at any time ¢ is a function of the time, 7,
remaining to complete the desgred state trajectory, where
={;—t. Therefore, when ¢’ =¢; — 7 and t=¢,— the gain
matrices are equal.
Kr (1) =Kp(1) ®
Thus, since tf' <, the matrix Kz (7') is a subset of Kg(?).
Furthermore, if Kg(?) is the Riccati gain matrix that opti-
mally drives the state of the system (A, B) from x(#) to x(¢))
in time interval £, — #o, then the Riccati gain matrix that transfers
the state along the same optimal trajectory in time interval
t; — to, where 1; <1y, can be expressed as
Kz (1) =Kg(t— (/- t;)) where to<t<t/ ©)
This result summarizes a very simple, yet significant, property
of the Riccati gain matrix. It enables the state of the system
(A, B) to be driven along an optimal trajectory at various
speeds by utilizing a single Riccati gain matrix (Kg(¢?)) delayed
by appropriate time shifts.

Example

Example 1. Inthis example, adapted from (Sage and White,
1977, Example 5.1-1), the system model is

. 1
x(t)= —Ex(t) +u(t)
and the performance index is

(721
J= SO [x2+2u]dt

-Kr@®

— Gain

tr=10s

34 56 7 8 9 10
Time (s)

Fig.1 Riccati gain functions for terminal times of 1 s and 10 s. (Adopted
from Sage and White, 1977, example 5.1-1.)
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Fig. 2 Riccati gain matrices that drive EVAD at 50 and 100 bpm
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For this problem, the solution of the Riccati equation (which
reduces to a scalar differential equation) gives the gain

Kg(t)=0.5+ 1.5 tanh (1.5(z,—t) —0.346)

The time histories of K] R(t) for t;/=1s and tf— 10 s are shown
in Fig. 1. Denoting KR(t) as the Riccati gain for #;=1 s and
Kr(2) as the gain for ;=10 s, then KR(t) can be found from
Kg(t) according to K, R(t) Kr(t—9)for0<t¢=<1s.Insummary,
a time shift manipulation of Kg(t) gives the Riccati gain that
drives the system through its optimal state trajectory at any
higher speed.

Example 2. The time shift property was exploited in con-
trolling the Penn State electric ventricular assist device (EVAD),

the model of which is derived in (Tasch et al., 1989).
0 1 0 0 0
. 0 —19.37 -9.39 0 217
XD=10 32 -075 015 (XN*) o (¥
0 0 0.21 -0.21 0
10 0 00
14 010000 S’f 5
J—2x () 0 0 00 x(¢) + o[0.20414(t)
0 0 00
0
+x7(1) "0'(()”63 u(t)ldt
0

The performance index reflects the desire to operate the EVAD
with minimal electrical energy consumption. The value of #is
varied to adjust the beat rate. For 50 beats per minute (bpm)
tyis set to 0.6s, and for 100 bpm #;is 0.3 s. The time histories
of the Riccati gains Kz(f) and KR(t) for 50 bpm and 100 bpm,
respectively, are shown in Fig. 2. For each desired beat rate
the controller computed the gain matrix according to
Kz()=Kg(r—0.3) for 0<7<0.3 s.

Closing

Once optimal state and control trajectories have been com-
puted for a linear quadratic regulator problem?, it may be

"_The deterministic linear optimal regulator problem always has a unique so-
lution (Kwakernaak and Sivan, 1971).
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desirable to generate other optimal trajectories for the same
problem but with different time intervals. While the backwards
integration of the Riccati equation could be repeated for dif-
ferent time intervals, a simple time-shift manipulation gives
the appropriate gain matrices directly. This result is applicable
to () time-invariant systems only, and (i}) continuous and
discrete time systems (the formulation for discrete time systems
readily follows).

In conclusion, the optimal feedback law of the linear quad-
ratic regulator problem is linear and involves the solution of
the Riccati equation. This note shows that for time-invariant
problems with finite but varying time intervals multiple so-
lutions of the Riccati equation are not necessary. Time shift
manipulations of the Riccati gain matrix yield the gain matrices
for regulator problems with shorter time intervals.
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A Frequency-Domain Suboptimal Controller Design
Methodology for Linear Time-Invariant Systems With
Controller Structural Constraints

Y. Lin!

1 Introduction

For linear time-invariant dynamic systems with quadratic
criteria, it is well known that the linear optimal controller is
constituted by feedback of system states, in which the feedback
gains are determined through the solution of a Riccati equa-
tion. However, this optimal controller is often difficult, if not
impossible, to implement because the full system states are
generally not available in reality, and are too complicated to
estimate on-line. In many engineering applications, especially
in view of heightening the system benefit-cost ratio, it is some-
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times desirable to design a controller based on the available
system measurements. This is referred to as constrained su-
boptimal control problem (Kosut, 1970) and is often encoun-
tered in practice.

The problem of output feedback controller designs for linear
time invariant systems was discussed by Man (1970), Dabke
(1970), Kosut (1970), Paul (1980), Ly (1985), and Zheng (1989).
Two approximate methods have been developed by Kosut. In
this paper, a general frequency-domain method is proposed
for the design of suboptimal controllers under either deter-
ministic or stochastic input conditions. The method can also
be applied to the design of output feedback controllers.

2 Problem Formulation
We consider the following time-invariant dynamic system:
X (1)=Ax(?) +Bu(?) +Dw(?) (1)
where x€R"*!, ue R™*! are the system state and control vectors,
respectively; AeR"*", BER"*™, DER™*" are constant matrices;

and weR ™! is a zero-mean white noise process with spectral
density

E[w () W (1)] = Web(t—1) @)
The system output vector yeR™ 1 is
y(£) =Cx(1) 3)

where C€R™" is a constant matrix.
The quadratic performance criterion is

1¢7

J=lim E[—S (yTQy+uTRu)dt] @
T—o T 0 .

It is known that if Q is semi-positive definite, R is positive

definite, and (A, B) is controllable, the optimal linear control

u’(¢) is given by (Kwakernaak and Sivan, 1972)

u’(1) = -F% (1) 5)
where
F’=R"'B"P )
and P is the solution of the Riccati equation:
PA+ATP-PBR 'B’P+C7QC=0 )

Although this optimal linear control law is desirable, it can
rarely be used in a practical situation because the full state
information x (¢) is difficult to obtain in real systems. Instead,
the measured quantity z(#) must be used directly as feedback:

u(t) = -K7z(s) ®)
where zeR**! is the measurement vector
z(7) =Mx(?) )

and K7eR™*°, MeR* ™" are constant matrices.
Combining (8) and (9) produces
u(t) = —K™x(¢) = —Fx(?) 10
where

F=K™M ¢R"*" an

In a more general form, the multiple structural constrained
control law can be specified as (Kosut, 1970)

u (1) = —Kz;(1) = —Fx(1) (12)

where
z;(t) =Mx(2)€R*!,  (M,eR%*") (13)
F,=K/M«€R"™", (KTeR"*%) (14

In this paper, the more general multiple constraints are taken
into account. The problem now turns into the determination
of K; in the new feedback gain F; for each controller in (12)
such that J of (4) is a minimum.

Although many numerical methods such as gradient search
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