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Abstract—The objective of this work is to demonstrate the use
of acceleration feedback to improve the performance of a maglev
system, especially in disturbance attenuation. In the single degree-
of-freedom (DOF) system studied here, acceleration feedback has
the effect of virtually increasing inertia, damping and stiffness.
It is shown that it can be used to increase disturbance rejection
without sacrificing tracking performance. Both analytical and
experimental results demonstrate that disturbance rejection can
be improved with acceleration feedback.

I. INTRODUCTION

Magnetic levitation (or maglev) systems utilize electromag-
netic forces to achieve levitation. They are open-loop unstable
and inherently nonlinear. Feedback control loops are used
to manipulate the electromagnetic forces to counterbalance
gravity. Examples of maglev technology can be found in
frictionless bearings, vibration isolation equipment, and ma-
glev vehicles. A classic control design approach for a maglev
system is to linearize the nonlinear system dynamics about
an operating point (equilibrium point) and design a linear
controller that operates about that point. Although the system
is designed to work at the operating point or its vicinity,
disturbances may drive the system away from the operating
point. If the disturbances are too large, the system will lose
balance and fail to operate.

Research work has been carried out to find how to attenuate
disturbances and improve the performance of maglev systems.
Investigators have proposed different control strategies. Shan
and Menq [1] reported two disturbance rejection algorithms—
internal model-based control and sliding mode control—that
improved the dynamic stiffness of a magnetic suspension
stage. Both simulation and experiments indicated that the dy-
namic stiffness of their system was increased. Fang, Feemster
and Dawson [2] reported a position regulation control strategy
developed for a magnetic levitation system operating in the
presence of a bounded, nonlinear, periodic disturbance. They
included simulation results, but no experimental data was
reported. Another position regulation control strategy, reported
by the same authors in 2006 [3], required that the disturbance
be bounded and the period of the disturbance be known. She,
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Xin and Yamaura [4] described a technique called equivalent-
input-disturbance estimation. The controller, designed using
H, control theory, generated an input signal based on the
information from a state observer. The input signal cancelled
the effect of the real disturbance. They provided simulation
results without experimental verification.

Previous research efforts show that different control strate-
gies can be used to increase the overall performance of a
maglev system. This research investigates an approach that
improves disturbance attenuation while not changing the sys-
tem response to a reference signal. Acceleration feedback has
been studied by previous researchers and proved to be effective
in improving system performance in disturbance rejection.
However, prior work has not discussed the implementation
of acceleration feedback on maglev systems. The primary
goal of this paper is to show that acceleration feedback can
be used on a maglev system to attenuate disturbance. Both
analytical and experimental evaluations of the acceleration
feedback technique are presented.

The acceleration control type servo system was proposed
as a novel design paradigm of servo systems by Hori [5],
and was further developed as a hybrid control method for
the position and mechanical impedance of robot actuators [6].
Experiments demonstrated the effectiveness of both systems
in disturbance suppression. Acceleration feedback control has
also been reported and used to improve the performance
of DC drives [7]. It allows systems to achieve substantially
higher overall stiffness without requiring higher bandwidths
of the velocity and position loops. For a maglev system, it is
important to note that acceleration feedback control alone does
not guarantee stability. For that, the system needs a position
regulator. The acceleration feedback changes the effective
inertia, damping, and stiffness of the system. It increases
the effective inertia of the system for disturbance rejection
purposes.

The maglev system used in this research is stabilized with
a PD controller. The system serves as a baseline from which
to make performance comparisons. Comparisons are made
between the system responses with and without an acceleration



feedback loop to a sinusoidal position command, first as a
position reference signal R and then as a disturbance signal
D, as is shown in Fig. 1. Performance is evaluated based on
the magnitude ratio (in dB) of the output versus input signals.
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+
Fig. 1. Block diagram of a system subject to disturbance D

In the following sections, the plant model of the maglev
system is presented and the basic theory of acceleration
feedback is introduced. The design, analysis, and simulation of
the acceleration feedback controller are shown. Experimental
results demonstrate the advantage of improved performance
with acceleration feedback on the maglev system.

II. MAGLEV PLANT AND POSITION REGULATOR

Fig. 2 shows a free body diagram of a single degree-of-
freedom (DOF) maglev device. Woodson and Melcher [8]
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Fig. 2. Free body diagram of the maglev system

proved that the attractive force acting on the ferrous object
is approximated by
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where K and K, are parameters characterized by the geom-
etry and construction of the electromagnet. These parameters
are determined experimentally in this research. Equation (1)
can also be derived from Maxwell’s equations. One important
assumption is that the ferrous object stays at the vicinity of the
electromagnet so the magnetic fringe flux can be neglected.
The governing equation for the ferrous object is determined
using Newton’s second law. Assuming vertical motion only, a
force balance on the levitated object shown in Fig. 2 yields
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Equation (2) shows the nonlinear form of the plant. In order
to design a linear controller for the system, a linearized model
is derived at the operating point where @ = iy, * = x¢, and
& = 0. The Taylor series of equation (2) is
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At the operating point the system reaches equilibrium,
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Substituting equation (4) into equation (3),
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where x = xg + dx and i = ig + 1.

Letting
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the equation of motion for the magnetic system is
& = ky0x — k;d1 (8)

Equation (8) is the linearized governing equation for the
maglev system where the current §i is controlled. Fig. 3 shows
the block diagram of the open-loop system where X (s) is the
Laplace transform of dz and I(s) is the Laplace transform of
1.
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Fig. 3. Block diagram of the open-loop system without acceleration feedback

Taking the Laplace transform of both sides of equation (8)
and assuming zero initial conditions,

$2X(s) = kX (s) — kil (s) )

Rearranging, the open-loop transfer function of the system is
X(S) —k‘i

= 10

I(s) 22—k, (10)

where the input is the control current and the output is the
levitated object position. From equation (10) the system has a



pair of real poles at +/k,. The plant is open-loop unstable
due to the positive real pole.

A position regulator is needed to achieve stable levitation.
In this research, a PD controller is used. If the levitated object
moves away from the desired operating point, the controller
will adjust the current passing through the electromagnet to
provide a restoring force to attenuate the position error. From
the control perspective, this is similar to adding “stiffness”
by using the gains of the controller. Fig. 4 shows the block
diagram of such a position feedback controller in a cascaded
configuration.

PD Controller

R(s) 4 X(s)

@ i s’ —Ik
_|_ X

Fig. 4. Maglev system with a PD controller

For such a system, the stiffness is provided solely by the
controller. It is sometimes referred to as the “active stiffness.”
(Active stiffness is added by the stiffness terms resulting from
the controller gains.) Fig. 5 shows the block diagram of such
a system with a disturbance D.

D(s)
PD Controller +
R(s) . — X(s)
K, +K_s — -
P D Z s —k,
_|_
Fig. 5. System without acceleration feedback loop with disturbance D

The transfer function between the disturbance D and the
output position X for this system is

X(s)

—k;
D(s)  s2+kiKgs+kiK, —ky

(1)

From equation (11), it is obvious that the frequency response is
shaped by the active controller gain K4 and K,. The position
regulator is actively used to achieve a stable levitation as well
as reduce the response of the system to disturbances. In order
to increase the stiffness of the system, a larger controller gain
is needed. Fig. 6 shows the Bode plot of two system with
different P gains and D gains. From the plot we can see
higher controller gains help to attenuate the system response
to the disturbance. However, for a maglev system, increasing
the controller gain may cause the system to be unstable.

The conclusion is that in order to increase the stiffness,
the controller gains need to be increased, but only certain
gain values will maintain the stability of the system. To raise
the dynamic stiffness without changing the controller gains
requires the use of acceleration feedback.
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Bode Diagram of & Maglew System without Accelerstion Feedback
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Fig. 6. Bode diagram of a maglev system with different controller gains

ITI. ACCELERATION FEEDBACK PRINCIPLE

Schmidt and Lorenz [7] demonstrated the principle, design,
and implementation of acceleration feedback control to im-
prove the performance of DC servo drives. In their research,
the acceleration signal was estimated using an acceleration ob-
server, scaled by a factor k4 rpp and fed back to the controller.
The feedback loop adds “electronic” inertia to the system.
In this research, the acceleration signal is calculated using
equation (8) instead of measuring it with an accelerometer.
Fig. 7 shows a block diagram of a maglev system with
acceleration feedback assuming the acceleration signal is avail-
able. The acceleration calculation and acceleration feedback
implementation will be given in the Experimental Results
section. The acceleration feedback loop is closed by a positive
feedback instead of a negative one because there is a negative
sign in the open-loop transfer function of the plant, as is shown
in equation (10).
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Block diagram of the open-loop system with acceleration feedback
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Fig. 7.

With the acceleration feedback loop, the current error signal
e become

e =00+ kappT (12)
The acceleration signal & becomes
I =—kie+ kydx (13)

Substituting equation (13) into equation (12), the acceleration
signal can be written as

&= —ki(0i + kappi) + ko0 (14)



Take the Laplace transform of both sides of equation (14)
and rearranging, the open-loop transfer function of the maglev
system with an acceleration feedback loop is
X (S) o —k‘i
I(S) - (1 —+ kik‘AFB)SZ — ky
where the input is the control current and the output is the gap
distance.
To ensure the transfer function between the reference single
R and output X remains the same, the PD position control gains
must be scaled by a factor of (1 + k;karp). The closed loop
system with both a PD controller and an acceleration feedback
loop is shown in Fig. 8.
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Fig. 8. System with a PD controller and an acceleration feedback loop

The transfer function between the disturbance D and the

displacement X is

X
Dgg —ki/[(1+ kikarg)s® + ki(1 + kikarp)Kas
+k1(1 + kikAFB)Kp - km}

The effect of adding acceleration feedback is the same as
adding some inertia—the so-called “electronic” inertia. The
“electronic” inertia makes the disturbance seem like it is acting
on a larger mass. The resulting effect on the dynamic stiffness
is shown in Fig. 9. (The phase shift does not change and is
thus omitted here.)
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Fig. 9. System responses of systems with and without acceleration feedback

With acceleration feedback the dynamic magnitude response
curve shifts down, which means the stiffness of the system has
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increased. The concept can be understood better by taking a
look at the dynamic stiffness change of the system, which is
the inverse of the transfer function between the disturbance and
the system output. For a system without acceleration feedback,
the dynamic stiffness is

D(s) 2+ k; Kys + ki K, — kg

X(S) n —k‘,‘
For a system with acceleration feedback, the dynamic
stiffness is
D(s)
X(s)

a7

[(1 + k,’k‘AFB)SQ + k‘,‘(l + k‘ik‘AFB)KdS

+ki(1 4 kikars) Ky — ka]/(—k:) (18)

The denominators of equations (17) and (18) are the same and
the numerators are the characteristic equations of the systems.
By choosing an appropriate acceleration feedback gain k4rp,
the gains for the double derivative term, derivative term, and
constant term can be made larger in equation (18) than those
in equation (17). The factor “1+ k4 rp” makes the mass seem
to be “k4rp” times more than its real value. This additional
part is the so-called “electronic” inertia added to the system.
In addition, the “electronic” damping coefficient k; K4 is
increased by “k;karp” times. The equivalent stiffness is also
increased. It means more “effort” in disturbance D is needed to
achieve the same X . In other words, a system with acceleration
feedback will have less change when experiencing the same
disturbance as a system without acceleration feedback.

Introducing an acceleration feedback loop has the effect of
increasing the effective mass, damping, and stiffness of the
system. Experiments will show that the system response to
the reference signal remains unchanged.

IV. EXPERIMENTAL RESULTS

For the maglev system discussed here, the position signal
is available for measurement and the control current, which is
the output of the controller, is assumed known. Equation (8)
gives the expression of the acceleration signal based on the
position feedback signal and control current. Fig. 10 shows
the block diagram of the maglev system with an acceleration
feedback loop, in which the acceleration signal is calculated
from the measured position signal and control current. Note
that there is also a position feedback loop to achieve a stable
levitation.
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Fig. 10. Block diagram of a maglev system with acceleration feedback



The acceleration feedback controller for the maglev system
is implemented in MATLAB/SIMULINK® with a dSpace®
control design system. The dSpace® system allows high level
programming using SIMULINK® blocks, and can automati-
cally transfer the SIMULINK® programs into executable files.
Two experiments are performed on a tabletop maglev testbed.
The first experiment compares the response of the maglev
system with and without acceleration feedback to a sinusoidal
reference signal. The second compares the response of the
maglev system with and without acceleration feedback to a
sinusoidal disturbance signal.

Fig. 11 shows the result of the first experiment. It can be
seen that the maglev system responds almost the same whether
the acceleration feedback is used or not.

w107 System outputs to a sinusoidal position command
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Fig. 11. System outputs of a maglev system tracking a sine command signal

The experiment was repeated for reference sine signals with
frequencies from 0.1 Hz to 10 Hz. Experimental results show
that the system can track a reference signal up to about 9
Hz. If the reference signal has a frequency larger than 10 Hz,
the system fails to track the signal or loses stability. (This is
because the linearized system does not take into consideration
the nonlinear character of the components at high frequencies.)
Although the Bode plot analysis shows results up to about
1600 Hz, the experiment validation only reached a maximum
frequency of 9 Hz.

Fig. 12 shows the comparison between the system outputs
with and without the acceleration feedback loop. The distur-
bance is greatly attenuated in the system with an acceleration
feedback loop. Fig. 9 shows the magnitude ratio of the
disturbance signal is about 60 dB smaller in the system with
an acceleration feedback loop. The amplitude of the system
with acceleration feedback is five times smaller than that
of the system without it. (The signal becomes noisy when
the amplitude of the system output becomes small.) The
experiment demonstrates that an acceleration feedback loop
in the system successfully attenuates the disturbance.
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Fig. 12. System outputs of a maglev system subject to a sine disturbance

V. CONCLUSION AND FUTURE WORK

An analytical and experimental comparison of the system
responses of a maglev system with and without acceleration
feedback loop is presented. Analytical and experimental results
show that the disturbance is attenuated significantly for the
system with an acceleration feedback loop. For the disturbance
signal, adding an acceleration feedback loop to the system
has the same effect as adding inertia, damping, and stiffness
in the system. The performance of the system subject to a
disturbance is improved. It is also shown that the system
response to a reference signal remains unchanged whether the
system has an acceleration feedback loop or not.

The acceleration feedback control method has been exper-
imentally validated to be effective on a single DOF maglev
system where the nonlinear model of the maglev system
was linearized and a linear PD controller was used. Future
work may investigate the possibility of implementing the
acceleration feedback method with a nonlinear controller. In
addition, the use of acceleration feedback to reject disturbances
may be tested on multiple DOF maglev systems.
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