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Abstract

This paper presents a computationally efficient method for solving optimal control problems involving
unconstrained linear time-invariant dynamic systems with quadratic performance indices. In the proposed
method, the difference between each state variable and its initial condition is represented by a finite-term
shifted Chebyshev series. The representation leads to a system of linear algebraic equations as the necessary
condition of optimality. The results of simulation studies demonstrate that the Chebyshev-based method
offers computational advantages relative to a standard Riccati-based and/or transition matrix methods.

Introduction

The optimal control of linear, lumped parameter models of dynamic systems is one of the principal
"state space” design problems. In this problem the optimal control trajectories and associated state
trajectories are sought which give the best tradeoff between performance and cost of control. In the general
formulation using variational methods, the optimality condition of this problem is cast as a two-point
boundary-value problem (TPBVP). One of the most well-known solution approaches is the Hamilton-Jacobi
approach which converts the TPBVP to a terminal value problem involving a matrix differential Riccati
equation. The Riccati equation gives the optimal solution in closed-loop form making it a preferred approach
for physical implementation, although it is computationally intensive and sometimes difficult to employ in
solving high order systems.

A preferred alternative for the optimal control solution of time-invariant problems is the open-loop
transition matrix approach (Speyer, 1986). Typically, the transition matrix approach converts the TPBVP
into an initial value problem. The transition matrix approach is also susceptible to numerical problems in
determining the optimal control of high order systems (Yen and Nagurka, 1990). In particular, numerical
instabilities, attributed principally to the error associated with the computation of large dimension state
transition matrices, can occur. An accurate and computationally streamlined approach for calculation of state
transition matrices of high order systems remains a research challenge (Moler and Loan, 1978).

In contrast to Riccati-based and transition matrix methods, approximate solution strategies, namely
trajectory parameterization methods, have been investigated. In general, these approaches approximate the
control, state, and/or co-state trajectories by finite-term orthogonal functions whose unknown coefficient
values are sought giving a near optimal (or sub-optimal) solution. For example, approaches employing
functions such as Walsh (Chen and Hsiao, 1975), block-pulse (Hsu and Cheng, 1981), Laguerre (Shih, Kung
and Chao, 1986), Chebyshev (Paraskevopoulos, 1983; Vlassenbroeck and Van Dooren, 1988), and Fourier
(Chung, 1987) have been suggested. Like the state transition matrix approach, many of these approaches
employ algorithms that convert the TPBVP into an initial value problem. The initial value problem is then
integrated with respect to time whose state and co-state vectors are then approximated by truncated orthogonal
series. This technique reduces the initial value problem to a static optimization problem represented by
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algebraic equations. The truncation of the orthogonal series results in errors, which can be minimized by
including more terms. However, the transition matrix (needed to convert the TPBVP 10 an initial value
problem) must still be evaluated which, as mentioned above, can cause instability problems in high order

systems.

A premise of on-going research is the utility of computational tools for solving optimal contro]
problems via state parameterization. An advantage of state parameterization is that the state initial condition
can be satisfied directly. A second advantage is that the state equation can be treated as a set of algebraic
equations in determining the corresponding control trajectory. This assumes that there are no constraints on
the control structure preventing an arbitrary representation of the state trajectory from being achieved.

This paper extends the work of (Yen and Nagurka, 1988) for solving optimal control problems via
Fourier-based state parameterization. Their work has shown that a Fourier-based state approximation offers
an accurate, computationally efficient, and robust methodology for solving linear quadratic (LQ) optimal
control problems relative to standard methods. For systems with different numbers of state variables and
control variables, artificial control variables were introduced to overcome the potential difficulty of trajectory
inadmissibility. These physically non-existent variables are driven small by being heavily penalized in the
performance index. The particular focus of this paper is to explore a parameterization approach based on a
finite-term Chebyshev representation of the state trajectory. Chebyshev functions can nearly uniformly
approximate a broad class of functions, making them computationally attractive (Vlassenbroeck and Van
Dooren, 1988). It is shown that the necessary condition of optimality can be derived as a system of linear
algebraic equations from which an unknown state parameter vector can be solved. The method is accurate and
computationally very attractive, especially for high-order systems.

Chebyshev-based Approach

Problem Statement

The LQ optimal control problem involves finding the control u(t) and the corresponding state x(t) in the
time interval [0,T] that minimizes the quadratic performance index L,

L=L1+Ls | 1)
where
L1 =xT(T)Hx(T) + hTx(T) (2)
T
L= | OQOx+uTOROuOTOSOuO+qTOxO+Tu@mldt  (3)
0

for the linear dynamic system with the state-space model

x(t) = A()x(t) + B(tu(r) 4)

with known initial condition x(0)=xg. The state vector x is Nx1, the control vector u is Mx1, the system

matrix A is NxN, and the control influence matrix B is NxM. It is assumed that weighting matrices H, Q.
R and S and weighting vectors h, q and r have appropriate dimensions, and that H, Q. R and S are real and
symmetric with H and Q being positive-semidefinite and R being positive definite.

Chebyshev Polynomials

In the parameterization promoted below, the basis functions of the approximated state vector include
shifted Chebyshev polynomials. In general, Chebyshev polynomials are defined for the interval Eel[-1,1]
and have the following analytical form:
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[k/2]
1 _ k-2i _
ox() = cos(kcos 1&) = 2 (1y(2 ),(k 21)‘( E)E ., k=0,1,2,.. (5

where the notation [k/2] means the greatest integer smaller than k/2. In shifted Chebyshev polynomials the
domain of the Chebyshev polynomials is transformed to values between 0 and T by introducing the change

of variables E =21t/ T - 1 giving

Y () = 0k (€) = g (21 - 1) (6)

where nondimensional time T =t/ T. From Equation (6) the first few shified Chebyshev polynomials are

vo=1 , y®=21-1 , =8>8+l
(7a-e)

ya() = 320-481%+187-1  , (1) = 1281%-256T+1601%-321+1

The initial and final values of the shifted Chebyshev polynomial and its first time derivative can be obtained
as

Vi) = DX, Wk(0) = (DK T)
(8a-d)

viM=1 , W(TM=2k¥T

State Parameterization

The LQ optimal control problem can be converted into a quadratic programming (QP) problem by
approximating each of the N state variables xn(t) by the summation of the initial condition and a K term

series.
Xn(t) = Xp0 + 2 k() ¥nk )]
k=1
where xp0=X5(0) and ynx (k=1,2,....K and n=1,2,....N) is the k-th unknown coefficient of the basis function
ck(t) for the n-th state variable. A variety of basis functions can be used as long as the state initial condition

is satisfied. Here, a shifted Chebyshev-series modified by the addition of a term such that ck(0) = 0 is
proposed; i.e., the basis function is

ct)=wd) + (-1}, k=1,2..,K (10)
Equaﬁon (9) can be written alternatively as
Xn(t) = Xpo+ T () yn (11)

where cT(t) and yn are

eIy =[c1(t) cat) --- ck(®)] (12)

n=[Yn1 Yn2 - YanT (13)
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In Equation (13) yn, is a state parameter vector (containing the unknown coefficients) for the n-th state
variable.

The state vector containing the N state variables can be written in terms of a full state parameter vector
y.ie.,

x(t) =xgp + C(t)y | (14)
where
cI(t) . 0 (15)
C(t) = ci(1) .
0 cl(t) NK
v [ Iyn yr e ykIT ] ‘
1
yolv2|_ [yan — yn o oyl (16)
N r
L Iy yw ot YNK] JNle
Similarly, the state rate vector can be written as
x(t) = D(t)y (17)
where
[ dT() 0 ]
dT ' (18)
D(t)=C@) = ®
T,
o d’(t) JNxNK
d'® = [0 &0 &M ] = V1O 2 -y () ] (19)

The control vector u(t) can also be expressed as a function of y. From Equations (4), (14), and (17),
u(t) =[B"(t)D(t)-B'l(t)A(t)C(t)]y - B 1(A()xo (20)

Equation (20) assumes that B! exists and implies that the lengths of the state and control vectors are the
same (i.e., M=N). By employing artificial control variables, this requirement is later relaxed. (See section
on General Linear Systems.) :
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Approximation of Performance Index

By substituting the parameterized state vector and control vector into the performance index, the
performance index can be approximated as a function of the state parameter vector y. First, Equation (14)
with t=T is substituted into Equation (2) to give the cost L as

L; = y[H®(T)T(D)y + y[2Hxo+h)®cT(T)] + x] (Hxo+h) Q1)

From Equations (14) and (20) the integrand of Equation (3) can be expressed as a function of the parameter
vector y, i.e., '

x7 Qx+u” Ru+x” Su+qT x+rTu = yT Py+y”T P"'XOTPO (22)
where

P = F;®ccT+F,®dd” +F3®dc’

p = QF 1xo+f)®c+(F3xo+f,)®d (23a-c)

po=Fixo+f

where F1, Fa, and F3 are NxN matrices and f; and f are Nx1 vectors given by
F, = Q+ATB7RB-1A-SB A, F,=BTRB"!
(23a-e)
Fs3 = -2BTRBIA+BTS,  f;=q-ATBTr, f2=BTr

and superscript -T denotes inverse transpose. In Equation (23a-c), P is an NKXNK matrix, p and pg are an
NKx1 vector, and ® is a Kronecker product sign (Brewer, 1978), e.g.,

[ V] IW “es Van
vew=| "V f )
L anw .o Vnnw R

where V is an nxn matrix and W is an arbitrary matrix. Thus, from Equation (22), the integral part of the
performance index can be expressed as

T
L2=j (yTPy + yTp + xgpo)dt = yTP'y + yTp* + x{pp (26)
0

where
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T T T
P’ =I Padt p =f p dt Po =f podt (27a-c)
0 0 0

can be integrated numerically. Combining Equations (21) and (26) gives the performance index L as a
function of the state parameter vector y, i.e.,

L=yQy+y o+ xg[Hx0+h+pE] (28)

where
Q =H®c(Me(TT+P* , = 2Hxe+h)®c(T) + p* (29a-b)

For time-invariant problems, F1, Fy, F3, f] and f are constants, and Equations (27a-c) can be rewritten as

T T T
P'= Fi® f (ccT)dt|+ Fo® f (ddT)dt|+ F3® f (deT)dt
0 0 0
T T
p’ = QFxo+f)® f cdt|+ (F3xo+f)® j ddt (30a-c)
0 0

P, = T(F1xo+f1)

The terms in the brackets can be evaluated numerically or derived in closed-form. For example, the first
integral term of Equation (30b) can be derived as

T T :
f cidt =f yi(tdt + (-1)k-1T='§a0i + (1KIT Gh
0 0 '

where }
1+ (-1}

0oy =0 and og; =
Optimality Condition

The optimal control problem now can be viewed as the search for the unknown coefficients of the state
parameter vector y that minimize the parameterized performance index of Equation (28). The necessary
condition of optimality can be obtained by differentiating the performance index with respect to the unknown
vector y. This leads to

(@+Q7)y=-w (33)

which represents a system of linear algebraic equations from which the unknown vector y can be solved.
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General Linear Systems

To apply the Chebyshev-based approach to general linear systems which have fewer control variables
than state variables, the state-space model of Equation (4) is modified to

x(t) = A@Dx(t) + B'(u'(t) (34)
where
; :

, p (N-M)x(N-M)

B (t) = BNXN - 0 BNXM (35)
Mx(N-M)

, , ﬁ(N-M)xl

u()=uy, = (36)
Upx1

where U is an artificial (i.e., fictitious) control vector.

It can be guaranteed that B' is invertible if the last M rows of B are nonsingular. However, if the last M
rows are singular, the first (N-M) columns of B' in Equation (35) can be modified to make it invertible. In
order to predict the optimal solution, the performance index is modified to

L'=L;+L, (37
where
T
L= f K OQMxM+u” OR Ou O+xT(0S Ou @)+ Ox+r Ou'®)dt (38)
0
with
. PINMxN-M)  Ovmyxm
‘O =Ryn=
Opx(N-M) Rpxm
, , PIN-M)x(N-M)
S = SNXN = SNxM (39a-c)
Opx(N-M) :

PO =ryn=[p-p 7]

where p is a weighting constant chosen to be a large positive number. If $=0, =0 and r=0, then Equation
(37) reduces to the following equation with the simple penalty function: :
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T
L= L+p ] [aT7® am)] dt (40)
0

By penalizing the artificial control vector, the magnitude and influence of the artificial control variables
can be made small and the solution of the modified optimal control problem can approximate the solution of
the original LQ problem.

Example

This example, adapted and modified from (Meirovitch, 1990, Example 6.3), considers a series
arrangement of J masses and J springs. As shown in Figure 1, it represents a 2J order system with a single
force input acting on the last mass, mj. The displacement of mass m; is denoted by q;- The mass and

stiffness matrices are

[ m 0
M= ey (41)
| 0 : mj
E ki+ k2 -k2
-kj ko+ks -k3 0
K = 2)
N ' -kj.1 kya+ky -kj
0 k;

The state equation of this system is given by Equation (4) with

x =[x1 x2..%25]" =[q1 Q2.--q1 41 d2.- ClJ]T (43)
0  {

A= , B=[00..01/m]" (44),(45)
-M-1K 0

The initial conditions are

x(0) =[x1(0) x2(0) ... x23(0)] (46)
where it is presumed
xj0) =1 Xj(O) =0 j=12,.,J-1,J+1,..,2] (47a-b)

implying that the last mass only has been displaced from rest.
The problem is to find the optimal control history, u(t), that minimizes the performance index

\ ]
N
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10 \
L =[ (xTQx + u?) dt 48
0
where
K 0
Q= ,
0 M 49

The integrand term x1Qx represents the sum of kinetic and potential energies of the system. The inclusion
of the integrand term u2 reflects the desire to minimize the force (as well as the total energy).

Using the values m;=10kg and kj=1N/m (j=1,2,....J) for three different systems, J=3, S, and 7, the
optimal solutions were determined using a Riccati approach, a transition matrix approach, and the proposed
Chebyshev-based approach. The Chebyshev-based approach assumed an eight term series (i.e., initial
condition plus seven Chebyshev-type terms), and the artificial control variable technique with p=105 was
employed . All simulation results were obtained on a Macintosh II platform running "C" programs. The
resulting values of the performance index and the execution time are summarized in Table 1.

For J=3 the response histories of the state variables x5 and xg (the displacement and velocity of the last
mass, respectively) and the control variable u obtained using the Chebyshev-based approach are compared,
respectively, with the state and control variables of the transition matrix approach in Figures 2 and 3. The 8-
term Chebyshev-based solution is close to the transition matrix solution. To verify that the artificial control
variable technique is successful, the time histories of the artificial control variable @ for both 8-term and 10-
term series are plotted in Figure 4. The figure shows that the artificial control variable based on a 10-term
series is smaller in magnitude (closer to zero) than the artificial control variable based on a 8-term series.
However, for both cases the magnitudes are small and hence the influence of the artificial control variables on
the system dynamics is negligible.

In summary, the example demonstrates the applicability of the Chebyshev-based approach to general
linear systems (with fewer control variables than state variables) and verifies the computationally efficient
nature of the solution procedure.

Conclusion

The aim of this paper has been to present a user-friendly and computationally efficient Chebyshev-based
algorithm for solving linear quadratic optimal control problems. The approach enables the necessary
condition of optimality to be written as a set of linear algebraic equations. This is a key reason underlying
the computationally streamlined nature of the approach. Another advantage of the approach, especially
important for time-invariant problems, is the availability of closed-form formulas for the integrals of shifted
Chebyshev polynomial terms. These integrals are needed in establishing the linear algebraic equations
representing the condition of optimality. Finally, an artificial control variable technique is promoted as a
means to make the approach tractable for general linear systems. Simulation results demonstrate
computational advantages of the proposed approach relative to a Riccati approach and a transition matrix
approach.
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Table 1. Example Simulation Results

J=3 J=5 1=7
Time Time Time
METHOD L (sec) L (sec) L (sec)
Riccat 7.6205 45.5 7.6204 296 7.6204 1030

Transition Matrix 7.6205 3.75 7.6204 13.2 | 7.6204 34.7

Chebyshev-Based
(8 terms) 7.6819 | 2.73 7.6858 | 7.57 | 7.6858 16.4
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Figure 1. 2J Order System of Example
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Figure 2. State Variable History of Example
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