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ABSTRACT

This paper presents a Fourier-based suboptimal control approach for the
trajectory planning of robotic manipulators modelled as coupled rigid
bodics. The basic idea of the method is 1o convert a standard optimal
control problem of infinite dimensionality (in time) into an optimization
problem of finite dimensionality by approximating the manipulator
trajectories by the sum of a polynomial and a set of appropriate
eigenfunctions. The optimal control problem can then be solved via a
nonlinear programming numerical algorithm given a performance index
whicl is a continuous function of time. This method can be applied 1o a
large class of problems with different perfonnance indices and requires no
model simnplification. Manipulator control problems with free final time
and states and with inequality constrainis can be handled effectively. The
method is demonstrated in two examples of trajectory planning for a
planar robotic manipulator model.

1 INTRODUCTION

The problem of controlling a robotic manipulator can be conveniently
divided into two closcly related subproblems: (i) trajectory planning
(also callcd motion planning), and (ii) trajectory tracking (also called
motion control.) For instance, a possible strategy for controlling a
manipulator consists of off-line trajectory planning followed by on-line
trajectory tracking; the latter usually involves the implementation of
closcd-loop feedback. Here, trajectory refers to the time history of
position, velocity, and acceleration for cach degree of freedom of a
manipulator model. This rescarch focuscs on a suboptimal trajectory
planning algorithm for unconstrained as well as constrained motion.

Schemes  for trajectory planning generally “interpolate”™ or
“approximate” the dcsired path by a class of polynomial functions.
These schemes then generate a sequence of time-based control set
points for the control of the manipulator from the initial location to its
destination. Quitc often. there cxists a number of possible trajectorics
between the two given endpoints. (In theory, there exists an infinite
number of possible trajectorics.) lFor instance, the manipulator can be
moved along a straight-line path that connects the endpoints (straight-
linc trajectory). or the manipuiator can be moved along a sinooth,
polynomial trajcctory that satisfics the position and orientation
cunstraints at both cndpoints (joint-inwrpolated trajectory). The
rescarch reported here exploits this potential of multiple possible
solutions by developing an ofT-linc optimal motion planning algorithm
that gencrates trajectorics that minimize a given performance index
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without violating any constraints. This trajectory generation algorithm
can be formulated as an optimal control problem. -

In solving optimal control problems, variational methods are applied to
derive the neeessary conditions for optimality which can be formulated
as two-point boundary-valuc problems (2PBVPs). Numerical
aleorithms have been developed to solve some 2PBVPs that are
analytically intractablc [1.2]. Although these algorithms have been
applicd to solve some optimal control problems, they are inadequate in
tackling problems such as the optimal control of robotic manipulators,
which typically have large numbers of degrees of freedom and strong
nonlincaritics. In fact, many nonlincar optimal control problems are
still computationally infeasible to solve.

In view of these numerical difficulties, various approaches have been
suggested for the optimal motion programming of robotic
manipulators. For cxample, by lincarizing the manipulator dynamics at
the final target point, Kahn and Roth [3] derived a ncar-minimum-time
control law for open kinematic chains. Vukobratovic and Kircanski [4]
used a dynamic programming based method to calculate the optimal
velocity profile for a prespecificd manipulator path. By ncglecting the
influence of Coriolis and centrifugal forces, Vukobratovic and
Kircanski [S] also applied optimal control thcory to solve for the
optimal motion of "simplified” robotic models. Kim and Shin [6)
presented a suboptimal control approach for manipulators with a
weighted minimum time-fuel criterion based on the concept of
avcraging the dynamics at cach sampling intcrval. Although these
approaches have been tested via computer simulations, their success is
limited. Each approach is either confined to a problem with a
particular type of performance index or it depends upon a simplified
dynamic model which may not be valid in many cases.

‘Townsend, er al., [7] and Schmitt, er al, [8] presented conceptually
similar, but altcrnative, approaches for solving optimal motion
problems for manipulators. In both approaches each joint angular
displacement is approximated by a function. In [7] this function
consists of a sum of a polynomial and a half-range cosine serics; in [8] it
consists of a sum of a cubic polynomial and a scquence of known
functions with unknown weighting cocfficients. The optimization
problem then involves finding the parameters of the approximating
functions that minimize a performance index.

In practice. these approaches are suboptimal. Only finite terms of the
expansion functions (ie. the half-range cosine serics in [7] and the
sequence of known functions in [8]) arc included. whereas. in theory,
the optimal solution requires infinite terms.  Nevertheless, these



approaches appear uscful in solving several types of optimal motion
problems.  However, in applying these methods a number of
unanswerced issucs arce raised.

1. Convergence. Can we guarantee that the suboptimal
trajectory converges to the true optimal solution, or if this is
not possible. that the suboptimal performance index, at
least, converges to the true optimal performance index?

2. Polynomial function. Can we specify the (minimum)
degree and cocfficients of the polynomial function such that
convergence is guarantced?

3. Boundary Conditions. Can various typcs of boundary
conditions, such as free, fixed, and coupled terminal
conditions, be treated? :

4. Critcrion of Optimality. Can we idcntify a criterion of
optimality that can be used to ensure the quality of the |
suboptimal solution?

5. Applicability. What, if any, limitations exist in applying
such suboptimal approaches? For instance, can such
approaches be used realistically to solve bang-bang type
control problems?

In response to the above questions, this rescarch develops a general
purpose Fouricr-based suboptimal control algorithm to generate
manipulator trajectories. This algorithm approximates the time history
of each gencralized coordinate by the sum of a fifth order polynomial
and a finite term Fourier-type series. Instead of finding the continuous
time history of the control variables, the proposed method reduces the
optimal control problem to one of searching for the optimal parameters
of the approximating functions. Due to the nature of the conversion,
the computational scheme of this mcthod is bascd on an inverse
dynamic approach and thercforc avoids most of the numerical
difficulties encountered in optimal control problems. By using
standard nonlincar programming techniques, the determination of the
optimal motion for high order, nonlinear robotic manipulator models is
hence feasible.

Unlike previous schemes, this method docs mot require model
simplification and can be applicd to a large class of optimal control
problems. Problems with variable terminal time as well as problems
with free or constrained tcrminal states can be handled easily. In
addition, a guidelinc that can be used to confirm the quality of the
suboptimal trajectory is suggested.

‘This paper is vrganized as follows. In the following scction, Scction 2,
the relationship among the manipulator dynamics, trajectory planning
and control system design is discussed. In Section 3. the methodology
and the function of various types of trajectory planning algorithms are
considered. Scction 4 is concerned with the formulation and numcrical
difficultics of optimal control problems for dynamic systems such as
robotic manipulators. ‘The main contribution of this research is
presented in Scctions 5 and 6. In Scction S, the Fouricr suboptimal
control approach is dcveloped and in Section 6, some important
characteristics of the approach arc discussed. Computer simulation
results that demonstrate the application and cffectivencss of the
propuscd algorithm are presented in Scction 7. Conclusions are given
in Section 8.

2 MANIPULATOR DYNAMICS

The dynamic equations of motion of a rigid-body manipulator model
are a coupled set of nonlinear ordinary differcntial equations describing
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the dynamic behavior of the manipulator. These cquations can be
derived by a varicty of approaches, such as the Lagrange-Euler,
Newton-Euler, and generalized D'Alembert formulations. For an n
degree-of-freedom manipulator configured as an open kinematic chain
the cquations can be expressed in the form

T(1)= M(G())E0D + Y (8(D.6()) + G(8(1)) m
where @ is an n x 1 vector of generalized coordinates associated with the
n degrecs-of-freedom of the manipulator, T is an n x / vector of
generalized forces applied at the joints, Al( @ ) is an n x n inertial-mass
matrix, 1/ 8, ﬁ ) is an n x I vector representing centrifugal and Coriolis
effects, G( @ ) is an n x / gravity loading torque vector, ¢ is time, and
superscript dot represents time derivative. In general, each element of
M and G is a complicated function which depends on §(1) , while each
elemcent of ¥ depends on both @(1) and g(1).

Given the equations of motion of a manipulator model. two types of
dynamic problems can be solved. In the direct dynamic problem, the
generalized force history is specified and the equations of motion can
be integrated to obtain the motion trajectories of the manipulator. In
the inverse dynamic problem, the desired generalized coordinates and
their rates are assumcd known a priori, e.g., from a trajectory planning
program, and the equations of motion arc used to compute the
gencralized force history.

Numcrically, the inverse dynamic approach i much more
straightforward than the direct dynamic approach. [In the direct
dynamic approach, integration of the differential equations of motion is
required, while in the imverse dynamic approach the same set of
cquations is used as a system of algebraic cquations. This distinction is
important from the perspective of computational efficiency and has
implications when considering the accumulated numerical error. Both
truncation and roundoff crrors significantly influcnce the convergence
of standard optimal control algorithms. Conscquently, computational
algorithms which arc basced on a dircct dynamic approach gencrally
have serious convergence problems in searching for optimal solutions
of high order, nonlinear systems.

Another important aspect that closcly relates to manipulator dynamics
is the design of the feedback controller. As indicated above, the
dynamic cquations that describe the manipulator motion are coupled,
highly nonlincar, ordinary diffcrential equations. The control system
design is complicated by the coupling and nonlinearity (which is due
physically to gravitational torques, reaction torques, and Coriolis and
centrifugal torques) As a result, these effects are oficn carcfully
studicd in the process of control system design.  For instance, the
relative magnitude of the effective incrtia at each of the joints and the
incrtial coupling between joints have practical importance. If the
coupling incrtias are small with respect to the effective joint inertias, the
manipulator can be treated as independent mechanical systems and the
complexity of the control law can be greatly reduced. Another example
is a manipulator not moving at high speed, for which the velocity
dcpendent tenns are typically neglecied, thereby making the
implementation of various real-time control laws possible. The
simplifications mentioned in these cxamples are often adopted but limit
the operating domain of the manipulator controller.

The interaction between various terms of the dynamic equations is
determined not only by the physical characteristics of the manipulator
and the load it carrics but also by the trajectory. It appears reasonable
to search for trajectorics that give rise to minimal nonlinear effects



and/or minimal dynamic coupling between joint motions so that
simplified control strategics such as lincar control theory and/or
decoupled feedback control schemes can be applied. One of the
objcctives of this research is to cxplore this approach of selecting special
trajectorics that can simplify the control system design problem. This
concept of marrying the stages of control stratcgy and trajectory
planning in order 10 increase the effectiveness of the control law is
demonstrated by an example in Scction 7.

3 PLANNING MANIPULATOR TRAJECTORIES

Typically, in manipulator programming the trajectory planner is viewed
as a bluck box. The inputs to the trajectory planner are usually the path
specifications. where the path is defined as the space curve that the
manipulater end-cffector moves along from the initial to final location
(pusition and oricntation).  In additon, the planner can accept
constraint information such as obstacle constraints (whether there are
any obstucles present in the path) and dynamic constraints (whether
there are any limitations on the generalized forces). ‘The outputs of the
trajectory planncr arc the trajectory and the gencralized force history.

There are two common approaches for planning manipulator
trajectorics. Onc approach requires the user to explicitly specify a set of
constraints at sclected locations, called interpolation points, along the
trajectory. The trajectory planncr then sclects a parameterized
trajectory from a class of functions that “interpolates” and satisfies the
constraints at the interpolation points. A second approach requires
explicit specification of the path that the manipulator must traverse by
an analytical function, such as a straight-line path in Cartesian
coordinatcs. The trajectory planncr then generates a trajectory to
approximate the desircd path.

In the above two trajectory gencration approaches it is desirable to
provide simple trajectories that are smooth, accurate, and efficicnt (in
terms of computational requirements and in terms of manipulator
performance such as energy consumption.) A fast computation time for
gencrating the scquence of control set points along the desired
trajectory of thc manipulator is preferred especially for cases of on-line
implementation. Because current trajectory planners usually do not
account for (i) the interaction between the trajectory and controller, and
(ii) the dynamic constraints, large tracking errors may result. Another
drawback of current trajectory planners is that they lack an objective
index to evaluate the trajectory performance.

Recently, the design of trajectory planners has shifted away from a
real-time planning objective to an off-line planning phase in order to
generate trajectories that can accommodatc more constraints and
achieve better system performance. For example, Lee [9] proposed an
off-line approach in which a trajectory planning problem . was
formulated as a maximization of the straight-line distance between two
consecutive Cartesian set points subject to smoothness and torque
constraints.

In essence, this new trend decomposes the control of robotic
manipulators into off-line trajectory planning followed by on-line
tracking control. Running ofF-line, a sophisticated trajectory planner
should be able to (i) generate a trajectory that satisfies path
specifications and various types of constraints, and (ii) achieve a
trajectory with supcrior performance which can be evaluated by an
objective function (ie, performance index). These goals kd to the
development of the trajectory planning algorithm presented in this
paper.
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4 MANIPULATOR OPTIMAL CONTROL.

In practice, optimal control approaches have not been implemented
widcly for programming trajectorics of manipulators duc to the
nonlincar naturc and high dimcnsionality of such systems. As
mentioned in the Introduction, the necessary conditions for optimality
(bascd on standard optimal control theory) lcad to a two-point
boundary-valuc problem (2PBVP).

Various numerical techniques have been proposced to solve the 2PBVP.
In genceral, these techniques fall into two categorics: gradicnt-based
methods and dynamic programming mcthods. The utility of the
gradient-based methods is limited duc to their dependence on gradient-
type information which is quitc scnsitive to numerical errors. The
applicability of the dynamic programming methods is hindcred by
dimensionality problems (ie. thc number of computations as well as
storage requirements typically grow much faster than the order of the
system.)

In addition to optimal control mcthods, nonlincar programming
methods represent an important class of optimization techniques. The
main difference between solving an optimal control problem and a
nonlinear programming problem is the depcndence on time (a
continuous variable). In an optimal control problem one seeks the time
history of an optimal trajectory, which in theory consists of an infinite
number of points. In a nonlinear programming problem, one searches
for a finite number of free variables to optimize a given objective
function, where the objective function and constraints are time-
independent. In order to bridge the difference between the nonlinear
programming and the optimal control methods, two different
approaches have been proposed, namely, the Rayleigh-Ritz technique
and the method of finite difference. The basic idea of these two
mcthods is to rcducc the optimal control problem with infinite
dimensionality to a problem of finite dimensionality which can be
solved by nonlinear programming methods.

The method of finite difference discretizes the time history of the
gencralized coordinate into a finite number of piece-wise continuous
intcrvals. The problem is thus changed into a problem of finding the
extrema of the objective function with the values of the piece-wise
continuous gencralized coordinate as free variables. This technique is
gencrally impractical when the degrees-of-frecdom or the time interval
of interest becomes large since the number of variables increases
significantly under such circumstances.

The basis of the Rayleigh-Ritz method is to replace each generalized
coordinate by a sct of weighted known functions. The unknown
weighting cocficicnts arc determined such that the performance index
of the original problem can be minimized. The K term approximation
can be expressed as

K
0= c,u, () ()]

k=)
Here the gencralized coordinate variable, @, consists of a sum of the
product of known approximating function, U and wcighting constant,
(% If the desired trajectory is specificd on one or both of the
boundaries, the approximating functions should be constructed in such
a way that the given conditions will be satisfied for all values of the
weighting constants. If the boundary conditions arc natural (ie., free)
boundary conditions, no such special precaution is required. Usually,
the number of constants required depends on the complexity of the
optimization problem and the shrewdness in selecting the



approximating functions. Best results arc usually obtained when using
approximating functions drawn from a funcuonnlly completc set of
eigenfunctions in the interval of interest.

Two drawbacks of the Rayleigh-Ritz method can be identified. First, it
is difficult to dectermine a set of approximating functions that
simultancously satisfies the boundary conditions on both the
generalized coordinates and their time derivatives. Second, even if the
approximating functions converge to the optimal solution, there is no
guarantee that the respective derivatives will converge. The approach
presented in the following section generalizes the Rayleigh-Ritz method
and corrects for these problems.

S FOURIER-BASED SUBOPTIMAL CONTROL ALGORITHM

Given the dynamic equations of motion of an n degrec-of-freedom
manipulator model, cquation (1), the optimal control problem is to find
an admissible control, T, that causes the manipulator to follow an
admissible trajectory, ﬂwt and zwt such that the performance index,

1/
J(Z())=L4(t )l( ).t + /2(2(1).é(1).1(!).l)dl (€]

is minimized. In equation (3), fand g are general functions of the
arguments shown and it is assumed that the initial conditions, (1)) and
i(lo) and the initial time, ¢, are specificd. ‘The final time, ., and the
terminal states, Q(t )and ﬂ(l ), can either be free or fixed.

The problem can be funhcr generalized by adding two types of
constraints. The first class of constraints, state variable incquality
constraints, can be written as

L@(n.0().1)<0 4)
where £ is an m x I (m < n) vector function of the states and possibly
time. In the trajectory planning problem, these constraints usually
represent obstacle (avoidance) constraints that exist in the working
environment.  The - sccond class of constraints, actuator-related
incquality constraints, can be expressed as

|T’| ST, . i=l.n 0]
where 7, is the maximum allowablc torque at the Fth joint. These
constraints reflect the fact that cach joint actuator is power limited and
subject to saturation.

The central concept of the proposed suboptimal algorithm is to convert
the optimal control problem into a nonlincar programming problem by
approximating each of the joint angular displacements by the sum of a
fifth order polynomial and a finite Fouricr-type series. For example,

for joint i,

0,(0)=PL1)+ Fy(0), ©
whecre the auxiliary polynomial, P/l). is defined as
P()=potp,t+p,l+p,0+p, 0 +p,0 o

and the K term Fourier-type series is defined as
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) kv(l—l)

(l) Za cos (l ’.,)

The velocity and acceleration of the ith joint arc obtained by dircct
differentiation of the above equations_ Control variables can be
calculated readily from the cquations of motion. The performance
index can also be computed by straightforward numerical intcgration
methods such as Simpson’s composite intcgral technique.

Assuming both the initial conditions and terminal conditions of the
state variables (joint displacements and velocities) are given, the
coefficicnts of the fifth order auxiliary polynomial are computed to
satisfy the following algebraic equations:

ke (1— lo)

+Zb sin———

k=1

@®)

0,(1)= P 1)+ (1) o)
0= P+ Fl1) (10)
6(1)= P 1)+ Fy(1) ay
6,0p=F )+ F (1) (12)
G)=F)+ i‘h.(:o) (13
G ) =P+ Fy) 14

Here the initial accclerations, 0 (1,) and final accclerations, 0 (I ), of
the joint variables as well as the cocfﬁcncms of the Fouricr scnes nrc the
variables left to be determined. The scarch for the optimal trajectory,
which in theory consists of an infinitc number of points, is thus
converted to a nonlinear programming problem with a finite number of
frce variables. These variables are the Fourier-type coefficients (";k'
b‘.k) and the frce boundary conditions of the trajectory.

The necessity of the fifth order auxiliary polynomial can be justificd by
the definition of the Fourier scrics and its property of differcntiability.
The following thcorem can be found in standard engincering
mathematics textbooks such as [10].

Theorem of Dirichlet: If X(1) is a bounded periodic function, X(1) =
X(1 + 2a), which in any one period has at most a finite number of local
maxima and minima and a finite number of points of discontinuity,
then the Fourier series of X{(7) converges to X(1) at all points where X(1)
is continuous and converges to the average of right- and left-hand limits
of X(1) at each point where X() is discontinuous.

The conditions of the Theorem of Dirichlet, which arc usually referred
to as the Dirichlet conditions, make it clear that a function need not be
continuous in order to possess a valid Fouricr expansion. The
implication is that it is reasonable to expect that every optimal
trajectory can be approximated by a Fourier serics since such a
trajectory satisfies the Dirichlct conditions.

It is next necessary to show that the suboptimal solution converges to
the true optimal solution. To do this, the following property is first
introduced.

Property of Dw'emwabduy The necessary and sufficient conditions
for X(l) l"(() in the interval [8,8 + 2a] where I{1) is X()'s Fourier
serics and X(¥) is continuous are (i) X(¢) is continuous, (ii) X(1) is pnwe-
wise differentiable in (8, 8+ 2a), (iii) X(3) = X(§ +2a), and (iv) XG)
= X(5 + 2a). This property can be generalized to the sccond derivative
case,



According to this property, we can conclude that as long as the above
four conditions are truc, the result of term by term differcntiation of the
Fouricr scrics of period 2a representing (/) in the interval of
(8.5 + 2a] converges w X(1) at cach point in [8, & +2a) at which X(1) is
continuous. A proof can be found in [11].

From this property, we find that equations (9) through (14) guarantec
the feasibility of direct differentiation of the Fourier series from
displaccment to velocity and from velocity to acceleration as long as
they arc all continuous. The convergence of the suboptimal trajectory
(including displacement, velocity and accclcration) to the true optimal
solution is thus guaranteed.

6 DISCUSSION OF SUBOPTIMAL APPROACH

This section discusses somc of the detailed characteristics, including the
restrictions and strengths, of the proposcd approach.

Local Minimum. The method guarantees only that a local minimum
solution is achieved. The suboptimal solution may not be unique.
Idcentification of the global optimal solution may require trial-and-error
selection of the initial gucss,

Numerical algorithm. The original optimal control problem has been
converted to a problem of ordinary extrema which can be solved by a
number of well-developed nonlincar programming techniques [12-15].
For example, the simplex method [16] is adopted in this research.

Accuracy. A closed form expression of the joint variables is available
and, thus, the joint torques can be computed directly from the
cquations of motion by straightforward algebra. The accuracy of these
cakulations is limited only by the least significant digit of the computer.
As a result, the accuracy of this approach is dominated by the numerical
error of the integration algorithm used to the evaluate the performance
index. Because the errors of numerical integration can be estimated
and controlled, the problem of convergence which is encountered
frequently in implementing standard optimal control approaches is
avoided.

Terminal states and time. The terminal states and terminal time can be
treated as free variables. During the search for the optimal solution,
they ~ together with other variables, such as the coefficients of the
Fourier series — are adjusted simultaneously in every itcration to
minimize the performance index.

Restrictions. Onc of the necessary conditions for the convergence of
the proposed approach is the continuity of displacement, velocity and
acceleration of the true optimal trajectory. This requirement is violated
in bang-bang control problems due to the finite jump(s) of the control
variables. Hence, the suboptimal trajectory will only converge to the
average of the neighboring points at the point of switch. However,
since bang-bang control has finite switch points, the valuec of the
suboptimal performance index will still converge to the value of the
performance index of the true vptimal solution.

Although in theory the proposed approach is capable of achicving true
optimal performance, simulation results show that the speed of
convergence of the suboptimal bang-bang contrul solution is usually
very slow. This property is similar to the "Gibbs' phenomenon® ([10),
Pp. 247-249) which occurs when developing the Fourier series for a
square wave function. As a consequence, when high accuracy is desired
(say an error in the performance index of less than 5%), thc number of
Fouricrtype expansion functions increases dramatically such that the
approach may become computationally impractical. In spite of this
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Figure 1. Two Link Planar Manipulator Model.

drawback, the proposed approach can always provide a smooth
trajectory except in cases where there is an instantaneous shift of the

control input (a situation which is physically impossible).

Critcrion for optimality. A possible means of verifying the quality of
the suboptimal control law is to check if it satisfics the necessary
conditions for optimality which are derived by variational methods. In
practice, this verification can be carricd out by substituting the
suboptimal solution into an appropriate standard optimal control
numerical algorithm and determining if the termination criterion of the
selected algorithm is satisfied.

An alternative empirical approach is to append another term of the
scries to the previous solution and repeat the optimization process.
Additional terms can be added, on a term by term basis, until the
change in the performance index is sufficiently small. (For
unconstrained problems, simulation results show that a two or three
term Fourier-type expansion yields satisfactory results.) It should be
noted that although it is a good idea to use the previous solution as part
of the initial guesses of the current optimization process, one cannot fix
the preceding terms of the Fourier type series and only treat the newly
appended terms as free variables. This is because a Fourier series with
finite terms is only optimal in the sense of mean square error, That is,
the coefficients determined by the Fourier formulas are the optimal
coefficicnts only in terms of the mean square error between the original
function and the finite term Fourier serics. The proposed algorithm
minimizes the algebraic difference between the true and suboptimal
performance indices which is mathematically different from finding a
suboptimal trajectory to minimize the mean square error to the true
optimal trajectory.

7 EXAMPLES
Enmplel.‘!hedymmictyﬂunofhtcmtismetwodwf-
freedom (ie. planar) robotic manipulator shown in Figure 1. If
acceleration duc to gravity acts in a dircction perpendicular to the x-y
planc, the cquations of motion arc;



(15)

(16)

H = Mdl’ satde s Mz[Dl’ + dl’ +2D,d cosh,] + I,
H,= Mzdzz +1

H,=M,D dcos6, + M d}+ I,

H= M,D, dzsinol

The path specification is to move the manipulator from initial position
[6,(0), 6(0)] = {0°, 30°] to final position [6,(1), 6,1)) = [120°, 60°] in
1 second with the initial and final velocity zero.

A simple trajectory planning method is to introduce a cubic polynomial
for each joint angular displacement. A cubic polynomial has four
cocfTicients, which can be found from the boundary requircments on
initial and final displaccment and velocity.

Alternatively, a performance index representing certain performance
characteristics of the manipulator can be proposed. The optimal
trajectory can then be obtained by applying the suboptimal method
presented in this paper. In this example, the performance index is the
control effort, represcnted by 2

27

k=)

In the suboptimal approach, each angular displacement is
approximated by the sum of a fifth order polynomial and a two term
Fourier-type series. The Simplex method [16] is used to search for the
optimal valucs of the coefficients of the serics and the initial and final
accelerations for both joints (with the cubic polynomial trajectory used
as the initial guess.)

160.00 -

140.00 4

120.00 A

100.00 -

DISPLACEMENTS (DEG)
g
8

40.00 A
20.00
0.00
~20.00
0.00 0.20 0.40 0.60 0.80 1.00
TWME (SEC)

Figure 2. Joint Displacement Histories for Example 1.
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The time histories of the angular displacements and the performance
index (using a cubic polynomial trajectory and the suboptimal
trajectory) are shown in Figures 2 and 3, respectively. Figure 2 shows
that the cubic polynomial trajectory connects the two end points by
smooth interpolation, whereas the suboptimal solution involves
displacements of the joints that deviate_outside the boundaries.
Although the suboptimal trajectory appears excessive and inefficient,
the performance index remains small during the motion. This contrasts
with the cubic polynomial trajectory for which the performance index is
espccially large near the boundaries. Integration of the curves of Figure
3 show that as a result of the optimization the value of the performance
index dccreases from 387.5 to 122.9 N2-m2-sce, indicating a significant
reduction in manipulator control effort.

Example 2. The previous cxample represents a typical, standard optimal
control problem since it concentrates only on the performance of the
open loop system. However, with an appropriately selected
performance index and a simplified dynamic model, a scheme to
improve the closcd loop system performance can be proposed. The
flowchart of this scheme is given in Figure 4.

The actual (on-line) generalized forces, T, are calculated according to a
prespecified simplified model. The performance index is chosen to
represent the difference between the planned trajectory, @, and the
actual trajectory (ie, system responsc), 8. The influence of the
dynamic terms, which were neglected in the simplified model, can thus
be minimized when the manipulator moves along the optimal
trajectory. It is expected that the simplificd model can satisfactorily
simulate the real dynamic model in the neighborhood of the proposed
trajectory. Thus, a simplified feedback controller that accounts only for
the dynamics of the simplified model should be able to effectively
regulate the dynamic response of the manipulator when moving along
the corresponding optimal trajectory. However, the sensitivity of the
resulting optimal trajectory to disturbances requires further
investigation in order to detcrmine the actual effective operating range
of the simplified controller.
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Figure 3. Control Effort History for Example 1.
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Figure 4. . Flowchart of an Intcgrated Algorithm
for Trajectory and Controller Design.

In this example, the manipulator model and path specification are the
same as in the first example. The performance index is assumed to be:

J=100[6,(1) - 6," (1)) +100[6,(1) - 8,"(1))?

1
+ [10,- 077+ @,- 014 an
0

Two simulation cases were studied. In the first case, the actual torques
were gencrated based on a simplified model (ie, equations of motion)
that neglected the Coriolis effect. In the second case, the simplified
model neglected both Coriolis and centrifugal effects.

Figures 5 and 6 display the joint displacement histories from the cubic
polynomial and the suboptimal algorithm, respectively. The planned
displacements and the actual displacements for the two simulation cases
are plotted.

Figurc 5 shows that significant tracking error occurred for the cubic
polynomial trajectory when the actual torques were calculated based on
simplified models. (Here, the tracking crror is defincd as the difference
between the actual and planned trajectorics.) For both joints the
tracking crror was largest for the second simulation case in which both
the Coriolis and centrifugal terms were neglected. For both simplificd
modcls, the actual trajectories failed to satisfy the final boundary
conditions and deviated significantly, especially for joint 2.

Figure 6 shows that the tracking error for the suboptimnal trajectory was
reduced significantly in comparison to the crror assaciated with the
cubic polynomial trajectory. In fact, the tracking error for the first
simulation case (in which only Coriolis was ncglected) was so small that
the curves in the figure coincide. (The minimization of the Coriolis
term is achieved by making the vclocity of each joint approximately
equal to zcro during part of the trajectory.) For the sccond simulation
case (in which both Coriolis and centrifugal effects were neglected), the
tracking error is observable in the figure; however, it remains small
rclative to the tracking error of Figure 5.
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Figure 5. Jbinl Displacement Histories
from Cubic Polynomial for Example 2.

In summary, this example demonstrates that the manipulator dynamics
can be influenced strongly by the trajectory. By adopting a “smart”
trajectory, it is suggested that the cffectiveness of simplifed controller
designs may be increased.

1:0,. 3 6: FLANNED TRATECTORY (Nagiscang Csnels)
2.0, 6.8 ACTUAL TRASCTORY (Neglscung Canebs)
3:0,. 7.86: PLANNED TRAJECTORY (Nagiacung Curais and csswrifugl)
4-0°, 86 ACTUAL TRASCTORY (Neglactng Canahs and csswviugal)

0.00 0.20 D.40 0.60 0.80 1.00
PME (SEC)

Figure 6. Joint Displacement Histories
from Suboptimal Algorithm for Example 2.
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8 CONCLUSION

This paper presents a general-purpose suboptimal trajectory generation
algorithm for robotic manipulators. The proposed approach is a
Fourier-based method which converts an optimal control problem into
a nonlinear programming problem. The algorithm is especially
effective in finding optimal manipulator motions for a variety of
performance indices while sidestepping many numerical difficulties
typically encountcred when directly applying optimal control theory to
find such trajectorics. A novel feature of this work is that integrated
trajectory planning and controller design is realizable by the proposed
methodology.
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