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A CONTROL PARAMETERIZATION APPROACH
FOR LINEAR QUADRATIC SYSTEMS

Vincent Yen

ABSTRACT

This paper develops a control parameterization approach for deter-
mining the (near) optimal trajectories of linear time-invariant systems with
Quadratic performance indices. In solving the linear quadratic (1.Q) prob-
lem for time-invariant systems each control variable is represented by a set
of approximating functions with unknown coefficients. This converts the
LQ problem into an unconstrained Quadratic programming problem which
can be solved for the (near) optimal control parameter values (i.c., the un-
known coefficients) by solving a system of linear algebraic equations. As
verified by simulation studies, the control parameterization approach is
particularly efficient when applied to minimum energy problems and 10
problems with significantly fewer contro} variables than state variables,

INTRODUCTION

In addition to variational methods (such as the Hamilton-Jacobi ap-
proach) and dynamical programming approaches, mathematical program-
ming techniques represent an alternative methodology for solving optimal
control problems. These techniques vsually approximate the state and/or
control variables by a set of prespecified functions, whose coefficients
characterize the state and/or control trajectories. The original problem is
thus converted into an algebraic optimization problem, which is solyed for
the (near) optimal values of the state and/or control parameters that mini-
mize the optimization objective function. A survey of work reported in
this arca prior to 1970 can be found in [1]; a survey to 1980 can be found
in [2]. A more recent study of control parameterization can be found in [3)
where optimal control problems with general constraints are addressed.

A direct application of mathematical programming is to characterize

the state and control trajectories by their values at a number of prespecified
locations (e.g., a number of equally-spaced points in time). The theoretical
and practical aspects of this method are covered in [4] for discrete-time
systems and in [5] for continuous-time Systems.

Ghonaimy and El-Zorkani {6} developed a control parameterization
approach for linear quadratic (LQ) problems with free and fixed terminal
states. In their approach, each control variable is approximated by a poly-
nomial or finite number of orthogonal functions whose coefficients are
sought. Results from a numerical example indicate that satisfactory results
can be obtained using polynomials of low order (i.e., less than or equal to
four). Although this approach is mathematically elegant, Ghonaimy and
El-Zorkani do not discuss the computational requirements of their ap-
proach nor compare execution times relative to Riccati equation solvers.

Yen and Nagurka [7] have presented a more recent application of a
mathematical programming technique to solve LQ problems. In [7] each
state variable is represented by the sum of a polynomial and a finite term
Fourier-series. Consequently, this state parameterization approach con-
verts an optimal control problem into an unconstrained quadratic pro-
gramming problem. Simulation results demonstrate that the method is
much more efficient than a Riccati equation solver in handling high order

systems.

Mark L. Nagurka

Department of Mechanical Engineering and The Robotics Institute
Camegie Mellon University, Pittsburgh, PA 15213

774

Based on a similar idea of mathematical programming, this paper de-
velops a control parameterization approach for LQ problems with free and
fixed terminal states. Similar to the state parameterization approach devel-
oped in [7], this approach converts an unconstrained LQ problem into an
unconstrained quadratic programming problem. In contrast to the carlier
work, this approach is particularly efficient in handling systems whose
number of control variables is significantly less than the order of the sys-
tem. In addition, this control parameterization approach is & very efficient
tool in handling minimum energy problems.

METHODOLOGY

Unconstrainted 1Q Problems

This paper considers the optimal control of linear time-invariant sys-
tems with quadratic performance indices. Such systems can be represented
by the state space model:

i = Ax(f) + Bu(r) )
with initial condition
x(0) = x, 2

Here, X is an N x 1 state vector, uisan L x 1 control vector, AisanN x
N system matrix, and B is an N x L control matrix. The performance in-
dex is a quadratic functional defined as:

PI = Plp + Ply + Pic ()]
where
Pip= % xT(4r) H x(sy) @
Y iy
Ply=11 xTQxd: , Plc=1| u™Ruds 5.6)
2 [ 2 0 ’

It is assumed that H and Q are real, symmetric, positive-semidefinite ma-
trices and R is a real, symmetric, positive-definite matrix. The total time
interval is [0, ¢/, where & is the final time. Superscript T denotes
transpose. The design objective is to compute the optimal control u(r) and
the corresponding optimal trajectory x(r) such that the performance index
P/ is minimized. :

The first step of this control parameterization approach is to divide [0,
Yl into J equal time intervals [1,, 41}, [1;, 2], .. ., 171, 4], where £,=0 and ¢
=4. The time of each interval is denoted by Ar. It is assumed that each of
the L control variables has a single value in each interval [ j=1, ..,
J, and is piecewise-continuous in [0, 5. .

Since over each time interval the control variables are single-valued,
the system can be represented by the following discrete-time model:
X (+1) = dx(D+Tu() for j=0,..,7-1 m
where the state transition matrix ¢ and the control matrix of the discrete
model I" are

¢ =erd, T o LA' eMdrB
’ 8.9
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and where, for the sake of simplicity, x(j) and u(zj) have been denoted by
x(7) and u(y), respectively. From multiple applications of equation (7), the
following equation can be obtained:
. F
x() = ¢x(0) + X ¢ Tu@) for j=1,...,J 10
i=0
Based on equation (10), the relationship between the state trajectory
and control trajectory can be established as:

<oxe = ¢x(0)+ Tue an
where
x(1) u(0) :
x=| @ L we=| WD (12,13)
x(J) WNx D u-1) Jozp
® T 0 -« -0
2 .
Po ¢ T = or I, 0000 (14,15)
¢ oLt
¢ e U Ut ERRS gt ')

Here, u® represents the time history of the quantized control vector and x*
is the corresponding response of the state vector. The subscripts in the
parentheses represent the dimensions of the matrices. In equation (11), the
term ¢°x(0) represents the contribution of the initial condition and the
term I'u* represents the influence of the control history vector u” on the
system response. Equation (11) will be used to convert the performance
index into a function of u*.

From equations (4), (5), and (6), the three components of the perfor-
mance index can be written in the following way:

J
PIa=2xTOHXU), Pla=Pra=13 X"(RQA(AL  (1617)
=0

I
Plc=1 T uT(Ru(ar (18)
j=0 .
In equation (17), Plp, i.e., the state integral part of the performance index,
can be approximated using Simpson's rule giving
’%Q forj=0andj=J

Qj = %Q forj=2’4....,-,'2 (19)
‘%Q forj=1,3,...,7-1

where J is assumed to be an even number. Note that P/'p is only an ap-
proximation of PIz. However, PIc can be computed without approximation
from equation (18) since the control vector is assumed to be single-valued
at every time interval. For the same reason, x(J) can be computed directly
from equation (10) enabling PI, to be obtained from equation (16) without
approximation. Thus the performance index P/ can be represented by P,
defined as

PI'=PIp+ Pl's+ Plc= AZL [0 TR w*+x"TQ" x"+xT(0)Qex(0)] (20)

where
Q 0.+ 0
0 QO---0
R.=[Rolu o "
0 Rlwawn
0 0 Qu (21.22)

0. -+ 0 Q+Hinawy

By substituting equation (11) into equation (20), the converted perfor-
mance index can be rewritten as:

Pl = %[H'TAU' +2uT0x, + x{\y xo] Q3

where
A= R- + rnTQor. , Q= r.TQo Q. , v - Qo + ¢.TQ.¢. (24,25,26)
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The basic idea of control parameterization is to assume that the value
of the i -th control variable can be represented by the product of an ap-
proximating function vector p(z) and a constant vector y;, i.e.,

uly=pPyi for i=1,..,L:j=0,...,J1 @7
where
P =P, PO =[py() p2() --- Pu(r)] (28,29)

vi=lyn y2...yd (30)

In general, p(r) can be chosen as a set of orthogonal functions or polyno-
mials. Several p(r) will be investigated in the section Simulation Studies.

From equation (27), the control vector u(f) can be represented by

w=p (DY for j=0,...,J-1 31)
where
p() O ... b 41
P = Y = y:z (32)
0 p(i)' XL Y;. (LM x1)

Here, Y represents an unknown vector of control parameters that need to
be determined in order to minimize the performance index PI’. Using
equations (13) and (31), the control history vector u* can be expressed as:

o = p”Y 34
where
()]
o X ¢)]
A I @5)
P VU-1) Juratan

Substituting equation (34) into equation (23), P/ ‘can be rewritten as:

PI'= Azl[YTA‘Y +2YTQ"x, + xTyx,| 36)
where .

A‘ = p..TA p" R Q. = P”TQ (37,38)
The necessary condition for optimal Y is

arr _ o )

A 39
which leads to

(A"« AT = 20°x “0)

Equation (40) represents a system of linear algebraic equations from
which Y can be determined uniquely. In equation (40), only the right-
hand side vector depends on the initial condition. As a result, LQ problems
involving the same system and the same performance index but different
initial conditions can be handled efficiently by using matrix inverse based
routines, such as LU decomposition.

A direct application of equation (40) is to choose Y as u* as suggested
in [4] and [S). Then, the necessary condition for optimality becomes

{(A+AT)e® = 20x, 1)

In this case J = M, i.e, the number of time intervals is equal to the number
of control parameters of each control variable.

As noted above, equation (40) represents a system of linear algebraic
equations. Consequently, solving Y from equation (40) involves a compu-
tationa! cost of order O(L3M?3) (see, e.g., [8]). Since the computational cost
increases cubically with the dimension of Y, it is important to minimize its
dimension. A disadvantage of choosing u* as control parameters is that it
makes J = M. As a result, solving u* from equation (41) involves a com-
putational cost of order 0(L3J3). In contrast, solving for the control pa-
rameter vector Y from equation (40) incurs a computational cost of order
0(L3M3). Therefore, by using appropriate approximating functions, M
(i.e., the number of control parameters) can be made to be less than J (i.e.,
the number of time intervals) and, hence, the computational cost can be




significantly reduced while maintaining the same level of accuracy. Fur-
ther considerations of the computational cost of the control parameteriza-
tion approach are discussed later. The effectiveness and accuracy of this
approach, including the use of different sets of p and Y, are addressed via
example problems.

LQ Problems with Fixed Terminal States

This subsection considers the optimal control problem defined in
equations (1) - (6) but with an additional constraint on the terminal state:

x(i) = xs “42)
From equation (10), this equality constraint can be written as:
J-1
1= #'x0) + 3, ¢/ lu@i) “3)
i=)
which, equivalently, can be represented as
cu’ =d “44)
where
¢ =[¢JIT 1 ... or r]w‘_”_), d=x- ¢’'x(0) (45,46)

Based on equation (23), the optimization problem can be formulated as:
Minimize PI' = Azl[n'TA v* + 20°70x, + xJyx] @7
subjectto cu’'=d

From equation (36), with the contro] parameterization of u® = p*°Y the
problem can be written as

Minimize PI'= Azl{Y’A’Y +2Y'0"x, + xTyxg) “8)
subjectto 'Y =d

where
¢ = e “9)

Equations (47) and (48) represent typical formulations of a quadratic pro-
gramming problem. Solution methods of such problems can be found in
the literature, e.g., see {9] and [10].

Minimum Energy Problems

The minimum energy problem is defined as an LQ problem with fixed
terminal states, a2 null state weighting matrix and an identity control
weighting matrix (i.e., Q=0, R=I). With Q=0, the optimization problem
defined by equation (48) can be simplified to:

Minimize FI'= Azz Y'A'Y (50)
subjectto €'Y =d

It can be shown that the solution of this problem is
Y= e e Y @T'a 1)

The control parameterization approach is particularly efficient in handling
such minimum energy problems. By further assuming R=I, it can be
shown that A°= 1. Applying this result to equation (51), the solution Y is
thus .

Y =) e ()] a
A similar result is obtained in [4] for discrete-time systems.

2)

DISCUSSION

Computational Considerations

The computational requirements for this contro] parameterization ap-
proach can be classified into three categories. The first part of the com-
putation involves setting up the conditions of optimality (i.e., equation
{40)). The associated computational cost of establishing optimality condi-
tions is of order O(JxL2xM2xN?). The second part of the computation re-
Iates to the solution of equation (40), a system of equations of order LxM.
As a result, the corresponding computational cost is of order O(L3xM?).
The last pant of the computation involves generating the state trajectory
from the control parameters. For the proposed approach, this can be done
via equation (10). The associated computational cost 'is of order
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O(sxN2xL?) where s is the number of points required for the state vari-
ables.

Since N and L are given, the computational cost can only be reduced
by using smaller M or J. Unfortunately, a smaller M implies that fewer
approximating functions are used, potentially sacrificing the accuracy. As
shown in equation (17), & smaller J may result in a less accurate approxi-
mation of the state variable part of the performance index. However, in
general, the accuracy of the control parameterization is determined by the
number of control parameters rather than the number of time intervals,
As a consequence, J can ofien be chosen as a small number to reduce the
computational cost. It should also be noted that J must be larger than, or at
least equal to, M. Otherwise, the control parameters become under-deter-
mined and equation (40) becomes singular.

In contrast, solving the Riccati equation by numerical integration re-
quires an order O(sxcxN3) computation where s is the number of integra-
tion steps (and is also the number of points where state and control vari-
ables are to be generated), ¢ is an integration routine dependent parameter
(for instance, c=4 for fourth order Runge-Kutta method) and N is the or-
der of the system. After solving the Riccati equation, an order O(sxcxN?)
method is required to integrate the state equations to generate the response
of the state and control variables. This stage is ofien required to assure the
system response meets the prespecified requirements on state and contro}
trajectories. -

In searching for the optimal trajectory, usually a rough sketch of the
system response is enough to determine if satisfactory results have been
achieved. For standard approaches, such as the integration of the state
equations, this does not necessarily mean that the number of integration
steps (and thus the computational cost) can be reduced since large integra-
tion steps produce large numerical errors. This difficulty does not apply to
the control parameterization approach since it is assumed that the control
variable is single-valued in each time interval regardless of the size of the
interval. As a consequence, a small s can often be chosen for the contro}
parameterization approach (but this is not necessarily the case in solvin
the Riccati equation). i N

From the above discussions, the contro] parameterization approach can
be computationally more efficient than a Riccati equation solver if (i) J is
substantially less than s, and (i) L is relatively small compared with N.
Benchmark results comparing the Riccati-based and contro! parameteriza-
tion solutions of LQ problems involving systems of various orders are
given below.

A special case is the solution of the minimum energy problem. By
choosing u®as Y, it is found that setting up equation (52) incurs & compu-
tational cost of order 0(JxN?). Generating the control variables (from the
same equation) involves an additional computational cost of order O(JxLxN
+ N?). As a result, the computational cost of solving for the optimal con-
trol Y increases only linearly with the number of control parameters. The
computational cost of generating the state variable history is of order
O(sxN2xL?). Compared to the solution of Y from equation (40) whose
computational cost increases cubically with the number of control parame-
ters, the control parameterization approach is particularly efficient in han-
dling minimum energy problems, since the cost increases linearly with J.
An example of a minimum energy problem is presented in the following
section.

SIMULATION STUDIES

The objective of this section is to evaluate the accuracy and effective-
ness of the contro! parameterization approach by comparing it to a stan-
dard Riccati equation solver. For the simulations reported here, both con-
trol parameterization and Riccati methods are applied to generate the state
and control variables at prespecified equally-spaced points in time for Jin-
ear optimal control problems with quadratic performance indices.

In the Riccati equation solver, the matrix differential Riccati equation
is first integrated backward in time. The results are then used to integrate
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the state equations (forward in time) to determine the system response.
The symmetry of the Riccati equation is utilized to reduce the computa-
tional cost. A fourth order Runge-Kutta subroutine is used to integrate
numerically both the Riccati and state equations.

In the control parameterization approach, the optimal parameter vec-
tor Y is first obtained by solving the system of algebraic equations defined
as equation (40). An LU decomposition routine is used in solving these
equations. The control variable profile is calculated from equation (34).
The state variable profile is computed from equation (11).

The computer programs used in the simulations were written in the
"C" language and compiled by a Microsoft Quick C compiler (Version
1.0). Efforts were made to optimize the speed of the computer codes. The
simulations were executed on an 8 MHz IBM PC clone with an 8 MHz 8087
COprocessor.

To verify the accuracy of the approach, the value of the performance
index from the control parameterization approach was compared to the
value from the Riccati equation solver. The time required to execute the
program was recorded for each simulation and is used as an index of com-
putational efficiency.

Example 1
Consider a second order, single input system
o[

21 1 63
with initial condition x(0)=[-4 4]7 where x=[x; x;]7. The weighting ma-
trices of the performance index are

H=0,Q=2 Y.r=-0s
and the terminal time, &= 2.0.

This example was solved by a Riccati equation solver and by the con-
trol paramcterization approach with four different approximating func-
tions. These functions are:

p‘{ = [1 ) S l]u/ (57)
p1 = [1 cosent... coswxt sinoyt ... sinoxfagxsy  (58)
p} = [1 t cosewyl ... coswxt  sinayt. .. sinth]u(x*z) 59)

ei=01 ... P N (60)

where

. 2krw
“5 1

(54.55,56)
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P1 is the case of using u* as Y and, for convenience, is called "value pa-
rameterization.” P2 represents a finite term Fourier series and is called
"Fouries-series parameterization.” P3 is the case of a finite term Fourier
series plus a ¢ term, and is called "Fourier-type parameterization.” P4 is
the case of 2 Kth order polynomial, and is called "polynomial parameteri-
zation."

In this example, the number of time intervals J is chosen to be 20.
The control variable histories from the Riccati equation solver and the
control parameterization approach using pi, P2, p3, and p4 are plotted in
Figures 1a, 1b, lc, and 1d, respectively. In these figures, the quantized
curves refer to the control parameterization solutions and the continuous
(smooth) curves refer to the Riccati-based solution. The resulting value of
the performance index, the number of control parameters and the percent-
age error are summarized in Table 1 for each approach. The percentage
error in Table I refers to the error of the value of the performance index
with respect to the value of the performance index from the Riccati equa-
tion solver.

From Figures la to 1d, it is clear that the control parameterization
approaches (except the Fourier-series parameterization method) achieve
satisfactory results. The inaccuracy of the Fourier-series method is due to
the inability of the Fourier series to converge at the boundaries.

The results summarized in Table I show that by using Fourier-type
and polynomial parameterization approaches, the number of control pa-
rameters can be much less than the number of parameters used in the value
parameterization method while maintaining the same level of accuracy. As
a result, the computational efficiency is improved without losing significant
accuracy. Computational costs of problems of the same and higher order
are reported in the next example. It is shown that, by employing Fourier-
type and polynomial parameterization, the applicability of the control pa-
rameterization approach is greatly improved. On the other hand, the ap-
plication of the value parameterization approach can only be justified in
limited cases due to its computational requirements.

Example 2

The goal of this example is to study the efficiency as well as the accu-
racy of the control parameterization approaches in handling LQ problems.
Here, an N-th order single input system is considered:

0 1 0 0

0 _
1 X 4+ 0 u (62)
SIS TS TR S P17

with initial condition x(0)=[1 1 ... 1]JT.
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The weighting matrices are Q=Lxw), R=1 and H=0. The terminal
time f=1. It is required that x(s) and u(?) be generated at 100 equally
spaced points. In this example, the integration time step for the Riccati

- equation solver is 1/100 time unit, The number of time intervals J is 20.
The approximating functions {except for the Fourier-series
Pparameterization which is not used in this example) and the number of
control parameters are identical to those used in Example 1. Simulation
results for N=2,...,10 are summarized in Table 0. In Table II the subscript
Fourier refers to the Fourier-type parameterization approach instead of the
Fourier-series parameterization approach, E refers to error and T refers to

Table I: Results of Example 1

Number of Comtrol

Approach Parameters M Performance Index v % Error
Riccati 18.693390 0
Value 20 18707765 769x 10-2
Fourier-Series! 9 19.171848 2.56
Fourier-Type2 6 18.709481 $61x 102
Folynomial3 6 18.706141 682x 102
1Using & three-term Fourier sesies

2Using a two-term Fourier series

3Using a fifth-onder polynormial

FIFTH ORDER POLYNOMINAL, J = 20, M=o

‘Riccati-Based Solution:

CONTROL YARIABLE

Pelynemial Parametarization

Figure 14. Contrel Variadle Histrey for Exsmpls 1
(Polynemial Paramsterization)

Table II shows that the control parameterization approaches used in
this example provide satisfactory accuracy in all cases. The value parame-
terization approach takes less time than solving the Riccati equation when
the system order is greater than or equal to six. Table If also shows that,
by introducing approximating functions and thus reducing the number of
control parameters, the Fourier-type and polynomial parameterization ap-
proaches are more efficient than the Riccati equation solver. 'In addition,
s shown in Table II, these two approaches have the same level of accuracy
as that of the value parameterization method. From the ratio of the time
required for the control parameterization approach and the Riccati equa-
tion solver, it is clear that the control parameterization approach is partic-
ularly efficient in handling problems whose number of control variables is
much less than the order of the system.

Table I: Simulation Results of Example Two

Nl PP AREZT REF] BEF] Ta0 | TviTe® |TrTe! | TriTa
x103] x10?] x 103} sec
2] 081371897 | 1.30 | 8.24 [5.82 756 | 0378 | 0378
3120571836 ] 1451 7.65 |13.9 551 | 0303 | 0.303
4138181793 11431 6.76 1304 280 | 0249 | 0.249
5159711789 | 1.41 | 648 [57.4 096 | 0227 | 0.222
61 8468 18.11 | 1.41 | 6.45 |10 0.931 | 0201 {_ 0.201
711296 1846 1 1.44 [ 6.57 | 168 0804 10184 | 0.184
8114454 {8.86 | 1.47 | 6.76 | 266 0.695 | 0.170 | 0.170
91179421923 | 1.50 | 6.96 | 400 0.618 | 0.160 | 0.160
10{21.758 [9.54 | 0.54 [ 7.17 | 583 0552 | 0152 | 0.152

1. Performance index from Riccati equation solver

2. Percent error of value parameterization approach

3. Percent error of Fourier parameterization approach

4. Percent error of polynomial parameterization approach

5. Computation time of Riccati equation solver

6. Relative computation time of value parameterization approach

7. Relative computation time of Fourier parameterization approach

8. Relative computation time of polynomial parameterization approach
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A Minimum Epergy Problem

Example 3
This example considers a minimum energy problem described by

i ‘[11 }] x+ [(‘) ‘1’] u ©3)
Pi= f wTude (64

‘The initial condition is x(0)=[1 0]T and the desired terminal state is x(1)=[0
0]. This problem is adapted from {11] (Example 5.3.3) where the closed-
form solution is derived. The resulting optimal value of the performance
index is 0.26865736. Here, this example is solved using equation (52).
The results are summarized in Table III. The results for the case of J=50,
together with the closed-form solution, are plotted in Figure 2.

An spproximate solution has also been obtained using the Riccati
equation solver by placing heavy penalty on the terminal states, i.e., H was
chosen as diag[100,100]. With the integration step of 1/100 time unit, the
value of the performance index was 0.265452 (i.e., an error of 1.2%) and
the terminal states were x,(1)=0.0076 and x,(1)=0.0023. The execution
time for this program was 6.4 second. The accuracy of this Riccati-based
approach can be improved by using larger elements for H. However, this
requires a smaller integration step size to avoid numerical instability
problems, increasing the computational cost.

In contrast, as shown in Table III, the control parameterization ap-
proach requires less computational time and also provides better accuracy
than the Riccati equation solver. The requirements on the terminal states
are also satisfied. Furthermore, Table ITI shows that the computational
cost, as expected, grows linearly with the number of the control parameters
which is equal to the number of time intervals in this case.

Table II: Minimum Energy Problem of Example 3
T(sec)

J PI % Error

50 0.26865985 9.3x104 0.7

100 0.26855798 2.3x104 1.2

. 150 0.26865764 1.0x104 1.7

200 0.26865752 6.0x10-5 2.2
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CONCLUSION

Based on the technique of mathematical programming, this paper de-
velops a control parameterization approach for LQ problems which are
unconstrained or have fixed terminal states. The approach converts an 1L.Q
problem into a quadratic programming problem. For an unconstrained LQ
problem, the necessary and sufficient condition for optimality is derived as
a system of linear algebraic equations which is readily solved.

As demonstrated by simulation results, the control parameterization
approach achieves high accuracy and is computationally faster than a Ric-
cati equation solver in handling problems whose number of control vari-
ables is small relative to the order of the system. A major advantage of
this approach is that it can handle minimum energy problems with consid-
erable efficiency.
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