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Fourier-Based Optimal Control Approach for
Structural Systems

Vincent Yen and Mark L. Nagurka
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

This paper considers the optimal control of structural systems with quadratic performance indices. The
proposed approach approximates each configuration variable of a structural model by the sum of = fifth-order
polynomial and a finite-term Fourier-type series. In contrast to standard linear optimal control approaches, the
method adopted here is a near optimal approach in which the necessary condition of optimality is derived as a
system of linear algebraic equations. These equations can be solved directly by a method such as Gaussian
elimination. The proposed approach is computationally efficient and can be applied to structural systems of high
dimension and (o systems with linear boundary constraints.

Introduction

HE problem of determining the optimal control of a linear

dynamic system with a quadratic performance index is
usually solved by a variational approach. Mathematically, this
linear quadratic (LQ) problem can be posed as a two-point
boundary-value problem (TPBVP). The initial conditions are
specified for the state equations and the terminal conditions
are specified for the costate equations, with the set of state and
costate equations often called the Hamiltonian system. Stan-
dard routines for solving linear boundary-value problems are
generally inefficient in solving such a TPBVP.! More efficient
methods specifically designed to solve the LQ problem are
available. These can be classified as closed-loop and open-
loop approaches.

The most widespread closed-loop approach is based on the
solution of a matrix differential Riccati equation. Various
algorithms have been proposed to solve the Riccati equation.?
In contrast, the open-loop approach converts the TPBVP into
an initial value problem by evaluating the exponential of the
Hamiltonian matrix (i.e., the transition matrix of the Hamil-
tonian system). An example of a structural application of this

open-loop approach is described by Turner and Chun.} A
detailed discussion of the closed-loop Riccati equation ap-
proach and the open-loop transition-matrix approach can be
found in Speyer.*

The Riccati-based approach is preferred for physical imple-
mentation due to the inherent advantages of closed-loop con-
figurations. However, it is computationally more costly than
the transition-matrix approach in solving time-invariant LQ
problems. In particular, to generate the optimal response of
an Nth-order system, the closed-loop approach requires the
solution of N(N + 3)/2 first-order differential equations [N
state equations and N(N + 1)/2 Riccati equations]. In con-
trast, the open-loop approach requires the integration of 2V
first-order differential equations (N state equations and N
costate equations). As a result, efficient software simulation
tools for solving time-invariant LQ problems are typically
based on the open-loop transition-matrix approach. For solv-
ing time-varying LQ problems, on the other hand, the Riccati-
based approach is usually computationally more efficient. The
time to evaluate the exponential of the time-varying Hamilto-
nian matrix is often greater than the time to integrate the
Riccati equation.
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As an alternative to the preceding methods, Nagurka and
Yen® proposed a Fourier-based approach to generate near-op-
timal trajectories of general dynamic systems. The basic idea
of the approach is to represent the time history of each gener-
alized coordinate by the sum of an auxiliary polynomial and a
finite-term Fourier-type series. The free variables, such as the
free coefficients of the polynomial and the Fourier-type series,
are adjusted by a nonlinear programming method to minimize
a performance index. The effectiveness of this technique has
been demonstrated via simulation studies.’

This research specializes this Fourier-based approach to
linear structural systems with quadratic performance indices.
The method exploits the linearity of the system model and the
quadratic nature of the performance index to guarantee identi-
fication of a global minimum, while being computationally
efficient. As demonstrated by simulation results, the method
offers computational advantages relative to previous closed
and open-loop methods and, as such, promises to be the basis
for efficient software for the design of optimal quadratic
controllers for structural systems.

Methodology

The behavior of a controlled linear structure is governed by
the equation of motion:

Mx(1) + Cx(1)+ Kx(t)=Bu(r)

x(0) =X 8]

where x is an NV x 1 configuration vector (i.e., a column vector
of N configuration variables), u is a J x 1 control vector, M is
an N x N positive definite mass matrix, Cis an N X N positive
semidefinite structural damping matrix, K is an N X N positive
semidefinite stiffness matrix, and B is an N x J control influ-
ence matrix. In this paper, it is assumed that J is less than or
equal to NV, i.e., the number of control variables is less than or
equal to the number of configuration variables. The deriva-
tion that follows and examples 1-4 consider the actively con-
trolled case J =N, i.e., the configuration and control vectors
have the same dimension, with B nonsingular. Example 5
addresses the case J <N for structural systems that are not
actively controlled.

The design goal is to find the optimal control u(¢) in the
time interval [0,77] such that the quadratic performance index
Lis

x(0) =xo,

,
L=z(T) Hz(T)+S (27Qz +uTRu) dt ()]
0

is minimized while satisfying the equation of motion [Eq. (1)].
In Eq. (2) z is a state variable vector defined as

W
=1 3)

It is assumed that H and Q are real, nonnegative-definite
symmetric matrices and R is a positive-definite symmetric
matrix. In addition, it is assumed that Q can be partitioned as

Ql %er
o=, )
/IQ: Qb
The performance index can thus be rewritten as
L=L,+L, 5
where
L,=zT(THz(T) (6)
.
L;=j (xTQ,x +x7Q, x+x7Q. x +uTRu) dt @]
0

J. GUIDANCE

where L, is the cost associated with the terminal configuration
and its rate, and L, is the cost associated with the trajectory.
It is assumed that the configuration and control vectors are
not bounded, the terminal time T is fixed, and the terminal
configuration x(T) is free or linearly constrained.

The following subsection describes the underlying idea of
Fourier-based optimal control. The subsequent subsection ap-
plies the Fourier-based approach to solve the unconstrainted
LQ problem for an actively controlled structure. The solution
of LQ problems with linear boundary constraints is addressed
later.

Fourier-Based Approach

For a structural system, the optimal control can be con-
verted into a mathematical programming problem by directly
representing the configuration variable by a Fourier series. In
particular, by assuming the optimal profile of the ith configu-
ration variable x;(7) to be continuous in the interval [0,77], its
Fourier series will converge to x;(f) in (0,2)), i.e.,

= 2k . 2kxt
xi()=ap+ L (ai cos 1 +bji sin x ) (8)
k=1 T T

In practice, only a finite number of terms of the Fourier series
is taken. An appropriate mathematical programming al-
gorithm can then be used to determine the optimal values of
the corresponding coefficients, which will determine an admis-
sible trajectory that minimizes the performance index. This
direct application of the Fourier series, however, has the fol-
lowing disadvantages:

1) Convergence is guaranteed only in (0,7) unless the opti-
mal x;(¢) has identical boundary values.® Since the trajectory is
defined in [0, 7], the convergence should extend from (0,7) to
[0,7].

2) Although the Fourier series converges to x;(), the deriva-
tive of the Fourier series does not necessarily converge to the
derivative of x;(7). Convergence of the first and second deriva-
tives is necessary since these derivatives appear explicitly in the
equation of motion [Eq. (1)].

3) The speed of convergence of the Fourier series, which
depends on the optimal x;(r), can be quite slow.

One method of overcoming the preceding difficulties is to
append to the series a linear function of time such that

xi(0)= (1) = 5(0) 7.+

d . 2k xt . . 2kxt
+EI (a,-, cos — +bj sin 5 ) 9)

which can be rewritten as

wit)=ag +§)l (a,-; cos ~25Tl’+b,; sin 2";') (10)
where
wi(1)=xi(1) = [xi(T) = x;(0)](t/T) (11)
is a linear function of time with the property
w;(0)=wi(T) (12)

As a result, w;(f) can be treated as a periodic function with
period T, which implies that its Fourier series has the follow-
ing properties®:

1) The convergence interval of the Fourier series of w;(¢)
extends from (0,7) to [0,7].

2) In the interval of (0,T), the term-by-term differentiation
of the Fourier series of w;(f) converges to the first derivative
of W;(f ).
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3) The speed of convergence of the Fourier series of w;(1) is
more rapid than the speed of convergence of the Fourier series
of x;(r).

In summary, by adding a suitable linear function of time to
x;(r), a new periodic function, w;(¢), can be generated which
has equal values at the boundaries of [0,7]. Consequently,
convergence on the boundaries and term-by-term differentia-
tion can be guaranteed, and the rate of convergence of the
Fourier series can be improved.

It should be noted that based on the property of Eq. (12),
the derivative of the Fourier series of w;(¢) converges to w;(r)
in (0,7). This convergence interval can be extended to [0,7] if
w;(r) has the same values at the boundaries.® In general, this
feature cannot be achieved by appending.only a linear func-
tion to the Fourier series. However, by adding a suitable
polynomial of time to x;(t), it is possible to make the function
as well as several of its derivatives have equal values at the
boundaries. For example, if

wi(0)=wi(T) (13)
w;(0) = wi(T) (14)
w;(0) = w;(T) (15)

then it can be shown that over the interval [0,T7] the first and
second derivatives of the Fourier series of w;(f) converge to
w;(r) and W;(¢), respectively. Also, the rate of convergence of
the Fourier coefficients of w;(¢) becomes three orders faster
than 6thc rate of convergence of the Fourier coefficients of
xi(t).

Equations (13-15) can be satisfied by appending a third-or-
der polynomial (without the constant term) to x;(r). However,
in the approach proposed here each configuration variable is
represented by the sum of a fifth-order polynomial and a
finite-term Fourier-type series. By raising the order of the
polynomial from three to five, the five coefficients of the
polynomial can be adjusted to satisfy Egs. (13-15) as well as
the constraints imposed by the initial conditions of x;(f) and
X;(r). (There are five coefficients since the constant term is not
included in the polynomial, but rather the Fourier-type series.)

In summary, the proposed approach is to approximate each
configuration variable by the sum of an auxiliary polynomial
and a finite-term Fourier-type series, i.e., fori=1,....N,

5 K
xi(t)=Y dut*+ ) (a,-,, cos L + by sin @) (16)
k=0 k=1 T T

Note that, for convenience, the constant term of the Fourier
series has been included in the auxiliary polynomial. By using
boundary-value equations for the configuration variable and
its rates, the six coefficients of this fifth-order auxiliary poly-
nomial can be expressed as functions of the boundary values
of x;(t), x;(t), and ¥;(t). Explicit expressions for these coeffi-
cients are given in Appendix A.

Using the results of Appendix A, Eq. (16) can be rearranged
and presented in the form

Xi(t1)=pi + pr\Xo + paXir + pyXir + paXir
X X
+tEl o+ 1 Bibix (17)
- k=1

where xo=x;(0), x;r = x;(T), and similarly for the correspond-
ing time derivatives, and where

Pi=Xp+Xgt +(—10x5—6xpT) 7+ (15x0+ 8k T) 7
+(=6xp—3xoT) 7 (18)
p1=T2 (0.572—1.57% + 1.5 —0.57) (19)
p2=(107" = 1574+ 67°) (20)
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p3=T(—47 +774 =37 @1
p4=0.5TXP =27+ 1) (22)
ap=—1+0} (0.572=73+0.57) + cos(ve7) (23)
B = ve(—7+ 107 — 1574 4 67°) + sin(v, 1) (24)

with
ve=2kx (25)

and
r=t/T (26)

Equation (17) can be written in compact form as

xi=p"yi +pi 27

where
pT=lor P2 Py P4 @ ax B ... Bxl (28)
Yi=lko xir xr Xr a ax b bx]™ (29

where p is a vector of known time functions used by the
Fourier-based approach, and y; is a vector of unknown
parameters for the ith configuration variable. The length of
both vectors is m =4+ 2K. Compared to Eq. (16), Eq. (27)
decouples the unknown parameters from the known parame-
ters of the configuration variable (in this case, the initial
values, xp and X, which are embedded in p;).

The configuration vector of the N-degree-of-freedom struc-
ture can be represented by

x=py+p (30)
where
x=[x x3 ... xyI7 (31)
y=0i7 »/ i (32
p=[py p2 ... PN)T (33
[T 0 . . . 0]
0 o7
p= (34)
0 ... 0 pT

By direct differentiation, the configuration rate vectors can
be expressed as

x=ay+gq (35)
E=yy+r (36)
where
7=p, q=p (37
y=b, r=p (38)

Thus, using the Fourier-based approach the configuration
variables x, ¥, and ¥ can be written as known functions of y.
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Actively Controlled Linear Quadratic Problems

This subsection implements the Fourier-based approach to
solve the LQ problem for an actively controlled structural
system with free terminal states. Equation (1) can be rewritten
as

u=B"'(Mx+Cx+Kx) (39)
since B has been assumed to be square and nonsingular. By

substituting Egs. (30), (35), and (36) into Eq. (39), the control
vector can be written as a function of y:

u=B"'(My+Ca+Kp)y+B~'(Mr+Cqg +Kp) (40)
Ultimately, the interest is to express the performance index as

a function of y. Toward this end, the terminal state is written
as a linear transformation of y, i.e.,

z(N=6y (41

where O is a 2N x mN transformation matrix with elements 1
and 0, specified according to

L, j=(@{—-1)m+2 for i=1,...,N
6= Jj=({i-N-1)m+3 for i=N+1,....2N
0, otherwise
(42)
By substituting Eq. (41) into Eq. (6), the cost L, is
L,=yT(8THO)y (43)

By substituting Eqs. (30), (35), (36), and (40) into Eq. (7), the
cost L, is

Ly=y"Ay +yT+p (44)
where A is a matrix, I' is a vector, and u is a scalar:
T
A= 5 (Y Fiy+ 3" Fyo+p Fip+y Fia+y Fsp+a"Fsp)dr
0
(45)
T -
r'= X @YFir + #7(F,+ F)g + 3T(Fs + Fy)p +¥Y'Fg
1]
+37Fp + &"Fep + 6'Flr + 37F]r + p"F{g)dt (46)

T
p= j (rTFir+qTFyq +pTFp +r"Fug +r"Fp +qTF,p)dt
0

(47)

where F),... Fg are matrices that depend on parameters of the
system and the performance index, i.e.,

Fy=M"BLRB,M (48)
Fy=C'B]l RB,,,C+0Q, (49)
Fy=K"BIRB K +Q, (50)
F,=2MTB] RB,;,,C (51)
Fs=2MTB] RB,, K (52)

F¢=2CTBI RB, K + Q. (53)
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where, for notational convenience, Bi,,=B~'. The perfor-
mance index L =L, + L, can now be expressed as a quadratic
function in terms of y:

L=yT(A+OTHO)y +y T+ (54)

The necessary condition of minimum L is thus

dL
E; =0 (55)
which is equivalent to
(A+AT+20"HO)y = -T (56)

Equation (56) represents a system of linear algebraic equa-
tions of dimension mN with the number of equations equal to
the number of unknown variables, i.e., the elements of y. It
can be solved using a linear equation solver, such as a Gaus-
sian elimination routine. In solving this equation for y, the
integrals of Eqs. (45) and (46) must be evaluated. Note that the
integral of Eq. (47) must be evaluated only when it is necessary
to compute the value of the performance index.

The integrals of Eqs. (45-47) can be computed efficiently by
writing these equations as

T
A= j YY" ®F, + 00" @F; + pp” ®F; + yo' @F,
0
+vp T @Fs + 0p” @F) dt (57
N T
r= E. j Qra YRS +29,0Q 1 + 20,0 Rf: + 4B/
n= 0

PaYRS: +Da0 @S + 1,08} +r,p®¢g, +qnp®g;) d

(58)
N T
b= };1 = L iy +fiaq; +[pip +[i7a; +fi7ipj
+/5aip)) dt 9

In Egs. (57) and (58), the symbol & is a Kronecker product
sign defined as

A A ... LA
faA faAd .. A
AQF=| . .. . (60)

fnlA' fn}A il fnlA

where A and F are matrices, with F assumed to be of dimen-
sion n x /. In Eq. (58), f represents the ith column vector of
Fy, and g/ represents the ith column vector of F[. In Eq. (59),
f¥ represents the ith row jth column element of F,. Equiva-
lently,

Fe=Uf f£ ... 1=l  for  k=1,..6;

ij=1,...N (61)

Fl=lgf gf ... gkl for k=456 (62)
Also,

o=p, qi=pi (63)

Y=p, ri=pi (64)
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For time-invariant LQ problems, the terms associated with
Fi(i=1,...,6) are constants and can be taken out of the inte-
grals. For example, the first term of Egs. (57), (58), and (59),
respectively, can be rewritten as

T T

j GY®F) dr= H {TTY)df] K F, (65)

0 0
N [T N T
E: L @ray®f,) dr = EI H (2ra7y) df] ®/f (66)
n= n= 0
N T N N T
L j Girep di= 3 L 1 H (rﬁ)df] 67
i=1j=1 Jo i=] j=1 0

Each of the terms in Egs. (57-59) can be written similarly. As
a consequence, only the integrals of the squares and cross
products of the time functions used by the Fourier-based
approach (e.g., the terms inside the brackets) need to be
evaluated. These integrals are independent of the system and
performance index parameters and can be solved analytically;
a sample integral table is provided in Appendix B. The integral
tables, which can be applied to problems of any order, make
the proposed approach numerically integration-free in solving
time-invariant LQ problems. '

An important feature of Eq. (56) is that the coefficient
matrix of y is independent of the initial conditions. Thus, for
the same cptimal control problem with different initial condi-
tions, the coefficient matrix remains the same; only the right-
hand side vector needs to be recomputed. As a result, numer-
ical algorithms such as LU decomposition (and linear
algebraic equation solvers based on matrix inversion) are par-
ticularly efficient for recalculation of y for different initial
conditions.

Linear Quadratic Problems with Linear Boundary Constraints

This subsection applies the Fourier-based approach to solve
the LQ problem for an actively controlled structural system
with linear boundary constraints. In general, these constraints
can be represented by

Ey,=v, (68)

where the vector v, and matrix E are assumed known and y, is
a subset of the parameter vector y. For example, for a prob-
lem with terminal constraints, the vector y, can be chosen as

Yo =2(T) (69)

by carrying out straightforward row and column exchanges,
the performance index L of Eq. (54) can be rewritten as

Bac Bap| | Ya r,
T S r T
L LV: yb] [du Abb] [}'a]+b" yb] [rb}*‘#

=T BaeYo + Y8 BosYo + YT Basys +¥] Avaya + ¥ Ta
+y Tp+u (70)

where y, represents the vector obtained by excluding y, from
Y.
The optimization problem is to minimize the quadratic
function of Eq. (70) while satisfying the equality constraints of
Eq. (68). Here, the solution is obtained by using a Lagrange
multiplier technique. A modified performance index is written
as

L=L +X\(Eyy—v)) oy

where A is a vector of Lagrange multipliers. The necessary
conditions for optimality can be obtained from

aL
3. =0 (72)
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aL
e 0 (73)
%= 0 (74)
Equations (72-73) are equivalent to
A . -T,
il (R N R
where
Apo =Age +AL (76)
Agp =Agp + A%, n
Apa=Apg + AL, (78)
App =App + AL, (79)

Using the matrix inverse lemma (see, €.g., Brogan,” p. 78), »»
can be expressed as

¥ =ATs + Ag(Tp +ETH) (80)

where
Ac==Ap' Apa(Aao = Aas Mgy Apa) ™" (81
Ag=—(App —Ape A Asp) ™! (82)

By substituting Eq. (80) into Eq. (68) and rearranging, the
Lagrange multiplier vector can be determined as

A=(EAZLN) N (vy—EATT: —EAJT) (83)

With A known, y, and y, can be calculated from Eq. (75).

Two special cases of linear boundary constraints are ad-
dressed next. The first case considers problems with fixed
terminal conditions. The second case addresses problems with
fixed initial control variables.

Case I: Problems with Fixed Terminal Conditions

Often, structural systems are required to move to target
positions with prespecified velocities. For such applications,
¥, is known a priori. Consequently, the necessary condition of
optimality can be obtained by setting the derivatives of the
performance index of Eq. (70) with respect to y, to zero. This
gives the necessary condition as

(Ags +A;) Ya= _yor(Aﬂ'b + QL)_ra (84)

from which the optimal value of y, can be determined. Com-
pared to the necessary condition of optimality of the uncon-
strained case represented by Eq. (56), Eq. (84) represents a
system of linear algebraic equations of reduced dimension.

Case 11: Problems with Fixed Initial Control Variables

Typically, optimal control problems are formulated with
given initial conditions on the state variables and with the
initial control variables free. In practice, actuators of physical
systems are maintained at equilibrium positions when not
used. As a result, initial tracking errors may occur due to the
delay of the actuators to reach the optimal conditions at the
beginning of the optimal trajectory. This difficulty can be
overcome by using the proposed Fourier-based approach.

It is assumed that the initial control vector is specified as

u(0)=uo (85)
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From Eq. (1), the initial value of the acceleration vector can be
computed from

¥(0) =M ~'(Buo— Cxo— Kxo) (86)

Like y, in case I, ¥(0) is a subset of y. As a result, the problem
can be solved using the approach of case 1. In summary, the
proposed approach ensures that the optimal control will
match the initial operating condition of the actuators.

Simulation Studies

Simulation studies were conducted to evaluate the effective-
ness of the Fourier-based approach relative to standard opti-
mal control solvers. In these studies, the configuration and
control variables were generated at prespecified equally spaced
points in time. Examples 1 and 2 examine time-invariant LQ
problems, whereas examples 3 and 4 consider time-varying LQ
problems. An empirical technique is developed and tested in
example 5 to apply the Fourier-based approach to a structural
system that is not actively controlled.

For the time-invariant LQ problems, the open-loop transi-
tion-matrix approach is used to first convert the TPBVP into
an initial boundary-value problem via the evaluation of the
exponential of the Hamiltonian matrix. The approach is ade-
quate for implementing the optimal LQ control law if the
converted initial value problem can be integrated on-line.
However, off-line inspection of the system response is often
required prior to any physical implementation to insure that
system specifications are satisfied. As a result, the integration
of the converted initial value problem is considered an essen-
tial part of LQ controller design.

The converted initial boundary-value problem is repre-
sented by a system of linear differential equations with con-
stant coefficients. By evaluating the state transition matrix,
such differential equations can be approximated by a set of
difference equations from which the response of the system
can be computed at equally spaced time intervals. This discrete
time approach is usually more efficient than numerically inte-
grating the differential equations. A more detailed description
of this discrete time approximation can be found in Brogan’
(pp. 272-273). In the transition-matrix approach used in ex-
amples 1 and 2, the matrix exponentials are computed numer-
ically using the algorithm presented in Franklin and Powell.?

In examples 3 and 4, the open-loop approach of examples 1
and 2 is replaced by a Riccati equation solver that is computa-
tionally more efficient in solving time-varying LQ problems.
The symmetry of the Riccati equation is exploited to reduce
the computational cost. After the Riccati equation is inte-
grated, the state equations are integrated to generate the re-
sponse of the state and control variables. A fourth-order
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Runge-Kutta method (with a time step of 0.01 time unit) is
used to integrate both the Riccati and state equations.

For the Fourier-based approach, a two-term Fourier-type
series is assumed. The optimal parameter vector y is first
obtained by solving a system of linear algebraic equations,
i.e., Eq. (56), using a Gaussian elimination routine. The con-
figuration vector and its rates are then computed from Egs.
(30), (35), and (36). The results are substituted into Eq. (39) to
compute the control vector. For the time-invariant problems
of examples 1 and 2, analytical integration results (summa-
rized in integral tables, such as the sample table listed in
Appendix B) are used to minimize the computational require-
ments. For the time-varying problems of examples 3 and 4, the
integrals of Egs. (45-47) are computed using Simpson’s rule
(with a time step of 0.01 time unit). To verify the accuracy of
the approach, the value of the performance index from the
Fourier-based approach is compared to the value from the
transition-matrix or Riccati approaches. The time (in seconds)
required to execute each simulation is used as an index of
computational efficiency.

The computer codes used in the simulation studies were
written in the C language and compiled by a Microsoft Quick
C compiler (version 1.0). Efforts were made to optimize the
execution speeds of these codes. The studies were conducted
on a 16cMHz NEC 386 Powermate personal computer with a
16-MHz coprocessor.

Example 1

This example considers a time-invariant LQ problem for an
N-degree-of-freedom structure. The mass matrix M and the
control influence matrix B are N x N identify matrices Jyx .
The damping matrix C is a band matrix of bandwidth 3 with
the values of all nonzero elements equal to 1. The stiffness
matrix X is also a band matrix of bandwidth 3 with diagonal
elements equal to 1 and the remaining nonzero elements equal
to —1. For example, for the case N =4, the equation of
motion is

1 0 0 0 1 1 00
01 0 0f._ 1 1 0.
X+ x
0 1 0 01 11
0 0 1 0 0 1 1
1 -1 0 0 1 000
-1 1 =1 0 01 00
+ X = u (87)
0 -1 1 - 0010
0 0 -1 1 00 0 1
Table 1 Summary of simulation results of example 1
Transition-matrix approach  Fourier-based approach? Comparison
N  Performance index Time Performance index Time %Time® A% PIc
2 62.841290 1.10 62.841291 077 700 <1.0x10-¢
3 196.687742 2.96 196.687743 1.21 409 <1.0x10°%
4 427.405%946 6.26 427.405950 1.84 294 <1.2x10-%
5 806.240859 11.59 806.240870 275 237 <1.3x10-¢
6 1360.441759 19.17 1360.441781 4,01 20.9 <1.6x10-6
7 2123.257824 29.55 2123.257836 5.71 19.3 <1.9%x10-¢
8 3127.938234 43.29 3127.938295 7.80 18.0 <2.0x10-6
9 4407.732165 60.69 4407.732257 10.44 172 <2.1x10-6
10 5995.888795 82.05 5995.888925 13.62 16.6 <2.2x10°%

2With two-term Fourier-type series.

Percent of execution time of Fourier-based approach relative to execution time of transition-matrix

approach.

CPercent difference of performance index of Fourier-based approach relative to performance index

of transition-matrix approach.
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Table 2 Summary of simulation results of example 2

Transition-matrix approach

Fourier-based approach?®

Comparison

N  Performance index Time Performance index Time % Time? A% P

2 164.059510 1.21 164.059510 0.72 595 <3.6x10-7
3 517.597140 3.13 517.597141 1.10 319 <3.9x10-7
4 1183.103282 6.65 1183.103286 1.65 248 <4.2x10-7
5 2258.102938 12.20 2258.102948 2.37 19.4 <4.9%x10-7
6 3840.121538 20.05 3840.121558 3.31 16.5 <5.5x10°7
7 6026.684485 30.70 6026.684521 4.56 14.9 <6.2x10"7
8 8915.317185 44.71 8915.317243 6.10 18.0 <6.7x10~7
9 12603.545041 62.40 12603.545129 7.97 13.6 <7.1%10-7
0

—

17188.893458 84.09

17188.893583 10.27

12.2 <7.4x10-7

2With two-term Fourier-type series.

bPercent of execution time of Fourier-based approach relative to execution time of transition-matrix

approach.

CPercent difference of performance index of Fourier-based approach relative to performance index

of transition-matrix approach.

The initial conditions of the N-degree-of-freedom structure
are taken as

xT0)=x"(0)=[1 2 3 ... N] (88)

The weighting matrices for the performance index, Eq. (2), are
defined as

H=10Inyxn (89)
R=1Inxn (50)
Q=Inxn 91

The final time T is taken as 1 time unit.

The simulation results for N =2,...,10 are summarized in
Table 1. (Note that the unit for execution time is seconds.) In
every case, the value of the performance index of the Fourier-
based approach has a percentage error less than 10~ relative
to the performance index value obtained by the transition-ma-
trix approach. As shown in Table 1, the Fourier-based ap-
proach is more efficient for high-order systems. This is be-
cause the computational requirements for setting up the
analytical integration results (e.g., the integral table listed in
Appendix B) are fixed and become less significant for higher-
order systems.

The time histories of x and u for the case N =2 are plotted
in Figs. 1a and 1b, respectively. The figures show that the
solutions of the two different approaches are indistinguish-
able. This agreement was observed in all other cases studied in
this example.

Example 2

This example investigates the effectiveness of the Fourier-
based approach in handling LQ problems with fixed terminal
states. The problem specifications of this example are identical
to those of example 1 with two exceptions. The first difference
is that the terminal weighting matrix H is specified as a null
matrix. The second difference is that the structure is required
to reach the origin with zero velocity at the terminal time, i.e.,

x(1)=x(1)=0 (92)

The simulations results for N =2,...,10 are summarized in
Table 2. The table shows that the Fourier-based approach is
more efficient than the transition-matrix approach, especially
in handling high-order systems. The values of the performance
index indicate that the percentage error of the Fourier-based
performance index is less than 10~ in all cases. In comparison
with Table 1, Table 2 indicates that slightly higher efficiency is
achieved in example 2. As suggested by Eq. (84), there are
fewer unknown configuration variable parameters than in ex-
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ample 1. The time histories of x and u for the case N =2 are
plotted in Figs. 2a and 2b, respectively. Again, the solutions of
the two approaches match closely.

Example 3

The problem specifications of this example are identical to
those of example 1 except that the diagonal terms of the mass
matrix are changed to 1 —0.17. As a consequence, the problem
becomes time-varying.

This example was solved via the Riccati and Fourier-based
approaches. The simulation results for N= 2,...,10 are sum-
marized in Table 3. As shown in the table, the Fourier-based
approach requires less computation time.than the Riccati
equation solver in all cases except for the case N=2. The
constant cost of computing the time functions used by the
Fourier-based approach becomes less significant in generat-
ingthe optimal trajectories for high-order systems. As such,
the Fourier-based approach is more efficient in handling high-
order systems.

The time histories of x and u for the case N-2 are plotted in
Figs. 3a and 3b, respectively. As with the previous figures, the
solutions of the two different approaches are indistinguish-
able.

Example 4

The goal of this example is to investigate the robustness of
the Fourier-based approach when subject to heavy terminal
weighting. A heavy penalty is often placed on the terminal

V. YEN AND M. L. NAGURKA
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states when an unconstrained LQ solver for problems with-
fixed terminal states is used. However, as demonstrated in the
following paragraphs, this technique may cause numerical
instability when a Riccati-based approach is used.

First, consider the case N = 2 in example 3 except that the A
matrix is modified to have diagonal elements of 200 (com-
pared to 10, previously). The performance index value ob-
tained by the Fourier-based approach is 151.445506. Perfor-
mance index values computed by a Riccati equation solver
using various of integration time steps are summarized in
Table 4. As shown in the table, the Riccati equation solver
suffers from a problem of numerical instability when the
integration time step is not sufficiently small. Although this
difficulty can be alleviated by reducing the integration step
size, this increases the computational cost. The problem of
numerical instability becomes worse for the Riccati-based ap-
proach as the terminal weighting increases.

To further test the robustness of the Fourier-based ap-
proach, the case N = 2 of the fixed terminal condition problem
of example 2 is reconsidered. Here, the problem is treated as
an unconstrained LQ problem with free boundary conditions
and with a nonzero diagonal terminal weighting matrix H.
Simulation results for various H matrices are summarized in
Table 5. The table shows that the value of the integral part of
the performance index converges to the performance index
value obtained in example 2 as the magnitude of the terminal
weighting increases. These results indicate that the accuracy of
the Fourier-based approach is insensitive to large terminal
weightings.

20

3¢ Example 2 Example 2
20
1 10
3 L
= - L
£ s :
>E x (Transition-Matrix g ok
& Fourier-Based >
= ) i b U] (Transition-Matrix
a 1.0 E L\ & Fourier-Based)
3 :
-10
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& Fourier-Based) R
00 20 . Lo —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time

Time
Fig. 2a History of configuration variables for example 2.

Fig. 2b History of control variables for example 2.

Table 3 Summary of the simulation results of example 3

Riccati-based approach Fourier-based approach® Comparison
N Performance index Time Performance index Time % Time® A% Pl
2 63.014689 9.61 63.014691 11.15 116.0 <3.1x10-¢
3 191.391620 29.61 191.391626 23.61 79.7 <3.2x107%
4 429.125200 74.13 429.125213 40.92 55.2 <3.3x10-%
5 809.605772 155.94 809.605798 6530 429 <3.4x10-¢
6 1366.230023 294.62 1366.230068 95.30 324 <34x10-%
7 2132.394458 509.33 2132.394530 130.44 256 <3.5x10-%
8 3141.495577 828.71 3141.495684 172.52 208 <3.5x10-¢
9 4426.929882 127202 4426.930036 225.69 17.7  <3.5x10-¢
10 6022.093875 1885.87 6022.094086 279.14 148 <3.6x10-¢

AWith two-term Fourier-type series.
bPercent of execution time of Fourier-based relative to execution time of Riccati-based approach.
CPercent difference of performance index of Fourier-based approach relative to performance index
of Riccati-based approach.
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Fig. 3a History of configuration variables for example 3.

Example 3
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Fig. 3b History of control variables for example 3.

It should be noted that the open-loop transition-matrix
approach is also very robust under heavy terminal weighting,
although evaluation of the transition matrix for the time-vary-
ing Hamiltonian matrix is a computationally intensive pro-
cess. In contrast, the Fourier-based approach is efficient and
robust in handling heavy terminal weighting for both time-
varying and time-invariant LQ problems.

Example §

The goal of this example is to illustrate an empirical tech-
nique that generalizes the Fourier-based approach to struc-
tural systems that are not actively controlled, i.e., systems
with fewer control variables than degrees of freedom. Here, a
single-input, two-degree-of-freedom structural system is con-
sidered. The equation of motion is represented by

[:) g]”[i ':]“[—12 _;]“[T]"- )

where
x= [’j (94)
X;
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Table 4 Summary of Riccati-based simulation results of example 4

Time step Performance index*®
1/100 Unstable
1/200 151.358291
17300 151.442453
1/400 151.445638
1/500 151.445728
1/600 151.445649
1/700 151.445592
1/800 151.445558
1/900 151.445538
1/1000 151.445525
1/2000 151.445501

ACompares to performance index of 151.445506 of Fourier-based approach.

Table 5 Summary of Fourier-based simulation results of example 4

H;? Performance Index (L) Integral part of Pl (L2)
10! 64.841290 28.996032
102 138.521335 117.355700
108 161.039320 158.080595
104 163.751807 163.444801
108 164.028629 163.997814
108 164.056369 164.053286
107 164.059143 164.058835
108 164.059420 164.0593%0
10° 164.059448 164.059445
1010 164.059510 164.059510
1020 164.059510 164.059510
1030 164.059510 164.059510
ADiagonal elements of terminal weighting matrix.
The performance index is
L =10x}(1) + 10x3(1)
|
- S (xTO\x +xTQxx + xTQsx + u?)ds (95)
0
with
1 1
Q|=Q2=Q3=[] l] (96)

To solve this unconstrained LQ problem using the Fourier-
based approach, an artificial control variable u * is introduced
as follows:

b el Jel el

97
The performance index is also modified as
L* =10x2(1) + 10x3(1)
1
- S (xTQ\x + X7Qx + XTQyx + u?+ Ru*?) dt (98)
0

A large magnitude of the weighting coefficient R will make v *
small; hence, the solution of the modified optimal control
problem will closely approximate the solution of the original
optimal control problem. Here, a value of R =10,000 was
selected (arbitrarily) and a two-term Fourier-type series was
used. The results of the configuration and control variable
time histories are shown in Figs. 4a and 4b, respectively. The
results from the Fourier-based and transition-matrix ap-
proaches agree very well.
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Although it may seem that the accuracy of the solution may
be improved simply by employing larger R in the modified
performance index, this may cause numerical problems since
the control weighting matrix may become ill-conditioned. To
overcome such problems, Yen and Nagurka? developed an op-
timization technique to simultaneously minimize the perform-
ance index and the contribution of the artificial control
variables.

In most cases, the preceding empirical technique is capable
of providing satisfactory predictions of the optimal solution
and is thus adequate for use as a software design tool. In
stmmary, using large but not extremely large artificial control
weightings can satisfy the need for off-line LQ controller
design without causing numerical problems.

Discussion

The Fourier-based approach is a state parameterization ap-
proach. As shown in Eq. (27), the trajectory of each configu-
ration variable is a function of the boundary values of the
configuration variable and its first and second derivatives as
well as the coefficients of the Fourier-type series. An advan-
tage of state parameterization is that it characterizes the opti-
mal trajectory (which, in theory, consists of an infinite num-
ber of points) by a relatively small number of state
parameters. An optimal control problem can thus be con-
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verted into an algebraic optimization problem (i.e., a mathe-
matical programming problem). The optimal values of the
state parameters can be determined to minimize the value of
the performance index. In general, the corresponding compu-
tations are much less complicated than those involved in stan-
dard optimal control solvers.

For LQ control of structural systems, the performance in-
dex, which initially is written as a quadratic functional (i.e., a
function of configuration and control variables, which them-
selves are functions of time), is converted into a quadratic
function (i.e., a function of time-independent parameters of
the Fourier-based approach). By differentiating this quadratic
function with respect to the free parameters, the necessary
condition of optimality is derived as a system of linear alge-
braic equations that can be solved readily. As verified by
simulation results, this Fourier-based approach is in most
cases computationally more efficient than standard LQ prob-
lem solvers in handling time-invariant and time-varying LQ
problems. The computational advantage of the Fourier-based
approach is especially evident for high-order systems.

In implementing the Fourier-based method, finite-term
Fourier-type series are employed. Consequently, the Fourier-
based approach can be classified as a near-optimal state
parameterization approach. In each of the simulation studies,
only a two-term Fourier-type series was used. The success of a
two-term series suggests that the higher-order terms of the
Fourier-type series do not contribute significantly to the qual-
ity of the near-optimal solution. As a consequence, in many
cases a Fourier-type series of few terms is required to achieve
satisfactory results.

The accuracy of the Fourier-based approach can be esti-
mated empirically by increasing the number of terms of the
Fourier-type series [i.e., incrementing X of Eq. (16)] and com-
paring the value of the performance index. Additional terms
can be added, on a term-by-term basis, until the value of the
performance index converges, indicating that the optimal so-
lution has been reached.

Work is currently underway to apply the Fourier-based
approach to solve LQ problems with constraints on configura-
tion and/or control variables. By converting these constraints
into systems of algebraic inequalities, the optimal values of the
configuration parameters of the Fourier-based approach can
be determined by nonlinear programming.’ If the configura-
tion and control constraints are linear, the resulting algebraic
inequalities will also be linear. As a result, a constrained LQ
problem can be converted into a quadratic programming
problem that can be solved by a number of well developed
algorithms.

Work is also in progress to generalize the proposed Fourier-
based approach for solving nonlinear optimal control prob-
lems. The underlying idea is to convert a nonlinear optimal
control problem into a sequence of LQ problems via a quasi-
linearization approach.' Each of the LQ problems is then
solved by the Fourier-based approach of this paper. This
procedure was demonstrated for solving nonlinear optimal
control problems of one- and two-degree-of-freedom robotic
manipulators.'' Simulation results show that the approach is
robust and efficient in generating optimal trajectories for low-
order manipulator problems with quadratic performance in-
dices. Currently, this approach is being applied to solve
higher-order manipulator problems and to solve general non-
linear optimal control problems with and without constraints.

Conclusions

This paper presents a computationally efficient alternative
to standard approaches for the solution of the optimal trajec-
tories of linear structural systems with quadratic performance
indices. The approach relies on a Fourier-based approxima-
tion of the configuration vector and converts the optimal
control problem into a simple mathematical programming
problem.
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The proposed approach avoids formulation of the costate
equations and requires no numerical integration in solving
time-invariant LQ problems. A major advantage of this ap-
proach is its computational efficiency especially in handling

high-order problems. A second advantage of the approach is -

that it is applicable to problems with free, fixed, or linearly
constrained boundary conditions. In particular, the boundary
value of the control vector can be set to any arbitrary level to
match the operating conditions of the actuators. This feature
does not seem to be feasible in previous approaches.

Appendix A: Coefficients of Auxiliary Polynomial

In the Fourier-based approach, the ith generalized coordi-
nate x;(¢) is represented by the sum of a fifth-order auxiliary
polynomial and a finite-term Fourier-type series as follows:

xi(t)=n; (1) + = (1) (A1)
where
5
()= Y dat* (A2)
k=0
K

)= 3 (aﬁt cos 222 4 b, sin 3@) (A3)

k=1 T T

By writing boundary-value equations for the configuration
variable and its rates,

Xio= x;(0) =1;(0) + x;(0) (Ad4)
Xo=x;(0)=1;(0) + x;(0) (A5)
Xp=%;(0)=;(0) + %;(0) (A6)
xir=x(T)=n{(T)+ =i(T) (A7)
Xir=x(T)=ni(T) + x(T) (A8)
ir=X(T)=7(T) + (T (A9)

the coefficients of the polynomial can be expressed as func-
tions of the boundary values and the coefficients of the
Fourier-type series. That is,

K
do=xpo— L Qi (A10)
k=1
' K
dy=xp—T"! E vibix (Al1)
k=1
1 K
da=§ B0+ T 2L viay (A12)
k=1

K K
dp= [ 10(—xo+X;7)— L viai +10 1 v,b,,] T-3
k=1 k=1
. . L .
+(_6xﬂ_4xiT)T_1+(—ixn+‘£XET)T ! (A13)
1 X X
diy= 15(xp—xiT) + +5 Eu,fa,-*—ls E vebix T-*
k=1 k=1
+(3Xn+7i';r)T"+(% 5:,.,-—5:‘-,)?“"2 (Al14)
X
d!'5= 6(_x5+xir)+6 E vkbil: T—$
k=1

+3(= 50— £ T~ =3 (to=%:r) T~ (A15)
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where
ve=2kx (A16)
Appendix B: Sample Integral Table
Evaluation of the elements of _(.Tpfp dr
¢ [orw dr
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