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ABSTRACT

This paper considers the optimal control of structural
systems with quadratic performance indices. The proposed
approach approximates each configuration variable of a
structural model by the sum of a fifth order polynomial and a
finite term Fourier-type series. In contrast 1o standard linear
optimal control approaches which typically require the
solution of Riccati equations, the method adopted here is a
near optimal approach in which the necessary and sufficient
condition of optimality is derived as a system of linear
algebraic equations. These equations can be solved directly
by a method such as Gaussian elimination. The proposed
approach is computationally efficient and can be applied to
structural systems of high dimension andior 1o structural
systems with fixed (or highly penalized) terminal states
without numerical difficulties.

INTRODUCTION

The optimal contro! of structural systems has important
applications including large space structures and civil
engineering structures. In the literature, these systems are
typically modeled as lincar, second-order differential
equations.

The optimal control of a linear dynamical system with a
quadratic performance index is usually solved by the
Hamilton-Jacobi approach. Mathematically, this approach is
a variational method which usually requires the solution of a
differential matrix Riccatd equation with a terminal
condition. Various algorithms have been proposed to solve
this type of equation; an extensive reference list can be found
in [1). In the interest of achieving real-time implementation,
these algorithms have usually been designed for improved
computational efficiency, since computational "bottlenecks”
typically arise in solving for the optimal control of high
dimension systems.

Without resorting to variational methods, Yen and
Nagurka [2] have proposed a Fourier-based approach to
gencrate near optimal trajectories of general dynamical
systems. The basic idea of this approach is to represent the
time history of each generalized coordinate by an auxiliary
polynomial and a finite-term Fourier-type series. The free
variables, such as the (free) coefficients of the polynomial
and the Fourier-type series, are adjusted by a nonlinear

programming method such that the performance index is
minimized. The effectiveness of this technique has been
demonstrated by simulation studies [2,3].

This research specializes this Fourier-based approach to
linear systems with quadratic performance indices. The
method exploits the linearity of the system model and the
quadratic nature of the performance index to guarantee
identification of a global minimum. In simulation studies, the
method proves accurate and demonstrates impressive
computational efficiency.

METHODOLOGY

The behavior of a controlled linear structure is
governed by the system of differential equations:

ME(1) + Cx(¢) + Kx(1) = Bu(s) 63}

with initial conditions x(0)=x, X(0)= %, where x isan
N x 1 configuration vector (i.e., a column vector of N
configuration variables), u is an L x I control vector, M is
an N x N positive definite mass marrix, C is an N x N positive
scmidefinite structural damping matrix, X is an N x N
positive semidefinite stiffness matrix, and B isan Nx L
control influence matrix.

In this paper, it is assumed that LEN, i.e., the number
of control variables is less than or equal to the number of
configuration variables. The derivation below and Example
1 consider the case L = N, i.e., the configuration and control
vectors have the same dimension, and B is nonsingular. For
this case, the structure is actively controlled. Example 2
addresses the case L<N.

The design goal is to find the optimal control (1) in
the time interval {0, t,] such that the quadratic performance
index :
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is minimized. Here, Q,, 0,, Q,, and H are real, positive,
semidefinite matrices and R is a positive definite matrix. In
addition, H and R are symmetric. (T denotes transpose.) Itis
assumed that the configuration and control vectors are not
bounded, the terminal configuration x(1,) and its rates ,_i(tf)
and jr:(t/) are free, and the terminal time #;is fixed.

The basic idea of the proposed approach is to
approximate each configuration variable by the sum of an
auxiliary polynomial and a finite term Fourier-type series,
ie,fori=1,..,N,

K
x(D=4,1+3 la, cos?™4p. sinZy 3
1 & Y
where K is the number of terms included in the Fourier-type
series and d; is a fifth-order polynomial in time

d(1)=dy+d, t+d, 12 +d 13 +d, 14+ d 15 (4)

The six coefficients of this auxiliary polynomial can be
written in terms of six boundary conditions, i.e., initial
conditions x{0), 1{0), and X{0) , and terminal conditions
x{t) , i{t) , and ¥fr) . Explicit expressions for these
cocfficients are given in [2].

Equation (3) can be rearranged and presented in the
form

X0 = p; + piXp + PoXy + Pi¥y + P

+ ga,‘au + éﬁlb& &)

where x, = x,(0), X, = x;(1), and similarly for the
corresponding time derivatives, and where

P = Xp + xpt + [F10x, — 6xp1](t)P +

[15xp+ Xptd(e/t)* + [=6x,=3 3,001 (6)

p, = %g[(,/;f)z-s(:/x,)us(r/z,)‘-(z/t,)’] ™
P2 = [10G/P — 15G/)* + 6(f)) ®

Py = HI-4ELY + TEY - 3@] @)
Py = .;.;}{(r/zf)S = 20kt + @) 10)

o, =-1 +4k21t2[(t/tf)2—2(t/tf)3+(t/{,)‘]+cos—2§n-—t an
]

By = 2kn[~(/)+ 106/ — 15 (/) + 6 (111)°]
+sin-—2k-72 (12)
7

Since the initial conditions x, and %, are presumed
given, p;is a known function of time. Furthermore, the
parameters defined in equations (7)-(12) are configuration
independent and are functions of time only, since the
terminal time 1, is assumed known.

From equation (5), the configuration variable x{t) can
be written in compact form as

@) = p + oy (3)
where

2" =[Py P2 P3 Ps @y---0x By... B 1014)
and

Y o= Ixp xp X, Xp ay...05 by...biY (15)
are vectors of dimension m=4+2K.

The configuration variables for the N degrees of
freedom can be written in terms of a configuration vector
X(1), e,

x(n) = p(» + p'(y 16)
where

X0 = [x0 xO ...x0F a7

2@ = [p(® p® . .. pyOF (18)

- - - -

X pT 0 . 0
Y, 0 p 0
Y = g = (19),20)
o .... T
.xN. L™ £ N

Note that y is a column vector of dimension Nm and that

p’ is a mamix of dimension N x Nm. Similarly,
configuration rate vectors,

X = g + ")y @n
and

i =0 + ¢'Oy, @2
can be introduced, where

g=2 . & =4 @3

= . ¢ =p @4

Since x(t}, %(1),and X(t) are known functions of y,
the control vector u(r) can be expressed from equation (1) as
a function of y . Ultimately, the interest is to express the
performance index as a function of y. Toward this end, the
performance index of equation (2) is decomposed into two
parts:

J=Jl+"2 (25)




where J; is the cost associated with the terminal
configuration and its rate and J, is the cost associated with
the ajectory. The terminal configuration and its rate can be

(", written as a linear transformation of y, i.e.,
x(1)
) = Zy (26)
(1)

where Z is a 2N x mN matix with elements 1 and 0,
specified according to

1, j=@{=-1)m+2 Jor i=1,...N
2N @n

z; = J=(i=N=1)Ym+3 for i=N+1,..,
0 , otherwise

From equation (26), the cost J, is

T

x(1) x(1)

H = Y'ZTHZy (28)
x(1) x(1)

From equation (1) (for the control vector) and equations
(16), (21), and (22) (for the configuration vector and its
rates), the cost J, is

5 = [NA0u+¥0i+ ¥ RAG  09)

= _f;’[xTAx + YT + QTy + Zldt (30)
In equation (30)

A = ¢''Fi¢" + ¢'TF,0° + p'TFp"

+ OTEQ + ¢'TEp" + o'TE" (3D
L=¢"Fr + o'"Fg + p'TFp

+ ¢'TFg + ¢'"Fp + S'TFp (32)
Q= rEY + ¢F,0° + pTFyp’

+ IEQS" + I'Ep* + g'Fp’ (33)

Z=71Fr+ gFq + pFp
+ I'Fg + 'Fp + JFp (34)

where F,, ... , F, are constant matrices that depend on
structural parameters and the performance index. If, for
notational convenience, B, =B}, then

F, = M"B] RB. M (35)
F, = C"B] RB, C + Q, 36)

F, = K'B] RB, K + Q, G
E, = 2M"B] RB, C (%)
Fs = 2M"B] RB, K (39)
Fg = 2CTB] RB, K + O, (40)

Since y is independent of time, equation (30) can be written
as .

L, = YAy + YT + QTy + & @1

where
A = J‘ YAdt . I = J‘ Tar (42),43)
0 0
o = J‘ Qdr , I = j TTdr  (44),45)
[+] ]

Since J = J; + J, is quadratic in terms of y, the
necessary and sufficient condition for global minimum J,
determined from

dJ
-_— = N 46
dy 0 @6)

[A" + AT + 2ZTHZly = - - Q@ @D

Equation (47) represents a system of linear algebraic
equations with the number of equations equal to the number
of unknown variables, i.e., the elements of y. It can be
solved using any of a variety of linear equation solvers, such
as Gaussian elimination routines. In solving this equation
for y, the integrals of equations (42) - (44) must be
evaluated. This can be done numerically or analytically.
The integrals have been evaluated in closed-form. The fact
that the integral tables can be evaluated analytically makes
the Fourier-based approach an integration-free method. Asa

" result, the computational cost is independent of the length of

time of the trajectory, making the approach substantially
more efficient than standard approaches (except possibly for
the case of exceedingly small time intervals.)

. An important feature of equation (47) is that the
coefficient matrix of y is independent of initial conditions.
The integrals A* are independent of initial conditions
(whereas the integrals I'” and Q° are functions of initial
conditions, terminal time, and system parameters.) Thus, for
the same optimal control problem with different initial
conditions, the coefficient matrix remains the same; only the
right-hand side constant vector needs to be recomputed. As
& result, numerical algorithms such as LQ decomposition
(and lincar algebraic equation solvers based on matrix
inversion) are particularly efficient for recalculation of y for
different initial conditions.

—————as o
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Figure 1. Two Degree-of-Freedom Mechanical System.

EXAMPLES

Example 1

Problem Statemen:: Consider the linear, two degree-of-
freedom, mechanical system shown in Figure 1. The
displacements x, and x, are measured with respect to the
equilibrium positions of the masses. For this system, the
equation of motion can be written in matrix form as:

1 0 11 2 -1
X+ i+ X=u
0 2 1 1 -1 3

with initial conditions x(0)=[1 1} and %0j=[1
1J7, where x=[x, xJ"

The problem is to determine the time history of the
control u =[ y, )7 that minimizes the performance
index, equation (2), where

H =100, ., R-= I3:2

where I . isan nxn identity matrix and

1 1

Q:=22=Q3= ]

Solution: This problem can be solved by standard
linear optimal control methods employing the Hamilton-
Jacobi approach via the Riccati equation. Alternatively, the
problem can be solved using the proposed Fourier-based
approach. Here K is set to 1, i.e., the crudest approximation
involving a one-term Fourier-type series is employed. The
system of linear algebraic equations (47) can be solved for y
from which the configuration vector, its rates, and the control
vector can be determined.

For this example, the Riccati equations were solved
using a fourth-order Runge-Kutta method with a time step of
0.01 sec. Running in Turbo Pascal (Version 3.02A) on an
IBM PC/XT with an 8087 co-processor, the computational
time was 76 sec. In comparison, the Fourier-based approach
required less than 3 sec to establish and solve the linear
algebraic equations for the vector of free variables, y , using
a Gauss-Jordan routine.
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Figure 2, Riccati-Based and Fourier-Based Optimal
Solutions of the Control Variables for Example 1.
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Figure 3. Riccati-Based and Fourier-Based Optimal
Solutions of the Configuration Variables for Example 1.

The time responses of the control variables, ¥, and
Uy, and the displacements, x, and x,, are shown in Figures
2 and 3, respectively. The results show that the Fourier-
based optimal trajectories determined using only a one-term
Fourier-type scries agree quite well with the optimal
trajectories from the Riccati solution.

Further tests were conducted to examine the numerical
robustess of the Riccati and Fourier-based methods when
high penality was placed on the terminal configuration. The
results indicate that the time step for integration of the
Riccati equations must be decreased to avoid numerical
instability as the penalty is increased, making the standard
approach computationally intensive. In contrast, the Fourier-
based approach can be applied to systems with highly
penalized terminal states without sacrificing the method’s
computational simplicity.
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Figure 4, Riccati-Based and Fourier-Based Optimal

Solutions of the Control Variable for Example 2.
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Example 2

This example is identical to Example 1 except that only
one control variable is available, i.e., u;=0and u,=u,and
there is no penalty on velocity in the performance index,

J = 100[21)+2(1)] + J:(x’,+;§+u2)dt

To solve this problem using the Fourier-based
approach, an artificial control variable, u,, is introduced as
follows:

10 11 2 -1 1 0]y
_i_:'+ x + X =
02 11 -13 01|y
with
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Figure . Riccati-Based and Fourier-Based Optimal
Solutions of the Configuration Variables for Example 2.




J=100[3(1)+2(1)]+ jo’ (B+2+2+Rid)dt

A large magnitude of the weighting constant R will ensure
that the artificial control u, will be small. Here, a value of
R = 10,000 was selected (arbitrarily) and a two-term
Fourier-type series was used.

The results of the control variable and displacement
time histories are shown in Figures 4 and 5, respectively.
Here, the configuration variables determined from the
Fourier-based and Riccati methods are in agreement,
whereas the control variables show a slight discrepancy,
which is due to differences in the configuration variable
rates.

DISCUSSION

The approach presented in this paper applies to
unconstrained linear optimal control problems with quadratic
performance indices. It is applicable to high dimension
systems and to systems with highly penalized terminal
configuration variables (and rates). Unlike variational
approaches, the approach does not require integration of
differential equations. The optimal (or more correctly, near
optimal) solution is obtained by solving a system of linear
algebraic equations for free, time-independent parameters.
As a result, the approact: is computationally very efficient.

By modifying equations (16), (21), and (22), it is
possible to apply the method to systems with fixed terminal
conditions. For example, if the terminal configuration
variable x, is given, then the term Pyx; is known, and one
element of equation (16) can be written as:

I.‘(t) = [P,-+szy]+[01 Ps Pg Oy...0 Bl‘
[xp %y Xy ay...ay by...b,IT (48)

Note that p, and x;, have been removed from equations
(14) and (15), respectively, since Xy is no longer a free
variable.

In the same fashion, problems with fixed terminal
configuration variable rates (i.e., X, and/or %, known) and
problems with fixed initial configuration wvariable
"accelerations” (i.e., ¥5) can be handled. In Ppractice, once
the fixed boundary conditions are identified, the
corresponding rows and columns can be extracted from the
coefficient matrix of y in equation (47) and the contributions
of the extracted columns can be subtracted from the
corresponding elements of the right-hand side column
vector. Using this technique, the same computer routines
can be used to handle problems with both fixed and free
boundary conditions, eliminating any additional analytical
work. Furthermore, problems with linear equality
constraints on the boundary conditions (e.g.,
x,(t,)+x2(r,)= 1) can be handled in the same manner.

CONCLUSIONS

The formulation introduced in this paper represents a
computationally efficient alternative to standard approaches
for the solution of optimal trajectories of linear structural
systems with quadratic performance indices. The approach
relies on a Fourier-based approximation of the configuration
vector. The performance index, which initially is written as
& quadratic functional (i.e., a function of configuration and
control variables which themselves are functions of time), is
converted into a quadratic function (i.e., a function of time-
independent parameters of the Fourier-based approach). By
differentiating this quadratic function with respect to the free
parameters, the necessary and sufficient condition of
optimality is derived as a system of linear algebraic
equations which can readily be solved.

A major advantage of this approach is its computational
efficiency, due to the fact that the optimal configuration and
control solutions are found from & system of linear algebraic
equations. In contrast, standard optimal control methods
typically require the integration of differential Riccat
equations. A second advantage of the approach is that it can
handle both frec and fixed boundary conditions on the
configuration vector, in contrast to linear optimal control
methods that cannot account directly for boundary condition
requirements. Finally, by utilizing quadratic programming
techniques, the approach can incorporate linear constraints
on configuration and/or control vectors, although this feature
was not explored in this paper.
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