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ABSTRACT

This paper tonsiders the 'optimal control of linear time-

invariant dynamical systems with quadratic performance indices.

The proposed approach approximates each state variable of a state-
space model by the sum of a third order polynomial and a finite
term Fourier-type series. In contrast to standard linear optimal
control approaches which typically require the solution of Riccati
equations, the method adopted here is a near optimal approach in
which the necessary and sufficient condition of optimality is derived
as a system of linear algebraic equations. These equations can be
solved directly by a method such as Gaussian elimination, making
‘the approach computationally efficient.

INTRODUCTION

The optimal® control ~of linear, time-invariant, lumped-
parameter, dynamical systems is the subject of much theoretical and
practical interest, and is well covered in many textbooks such as
(Athans and Falb, 1966; Kirk, 1970; Sage and White, 1977; Lewis,
1986). In the literature, these systems are typically represented by
state-space models involving linear, first-order differential equations
with constant coefficients. One of the most common approaches for
determining the optimal control of linear dynamical systems with
quadratic performance indices is the Hamilton-Jacobi approach.
Mathematically, it is a variational method which in general requires
the solution of a matrix differential Riccati equation with a terminal

condition. Various algorithms have been proposed to solve this type -

of equation; an extensive reference list can be found in (Ramesh, et
al., 1987). These algorithms generally suffer from computational
"bottlenecks” in solvmg for the optimal control of high order
systems.

In contrast to variational methods, mathematical programming
techniques represent a distinct approach toward the solution of
(linear and nonlinear) optimal control problems. In general, these
techniques convert an optimal control problem into an algebraic
optimization problem. A survey of work done prior to 1970 can be
found in (Tabak, 1970). A more recent survey can be found in
(Kraft, 1980) Theoretical aspects of determining the optimal
control via mathematical programming are also covered in (Canon,
et al., 1970; Tabak and Kuo, 1971).

A direct application of mathematical programming is to
discretize the state equations using a finite difference method. A
linear or nonlinear programming algorithm can then be used to
determine the values of state and control variables at every time
interval such that a performance index is minimized. A difficulty
with this approach is that the finite difference approximation leads
to a system of algebraic equations which is typically of very large
order. As a result, the optimization is computationally intensive and
can pose serious problems in obtaining a realistic solution.

Modified approaches involving mathematical programming
have been proposed. In (Hicks and Ray, 1971) and (Sirisena and

‘Tan, 1974) the -control viriables are represented by the sum of

known basis functions. Mathematical programming algorithms are
then used to determine the optimal values of the coefficients of the
basis functions that minimize a performance index. To evaluate the
performance index, such control parameterization methods require
the integration of the state equations which is usually time
consuming and Sensitive to numerical errors.  Furthermore,
constraints on terminal states (e.g., fixed- terminal conditions) are
not easily satisfied.

Mathematical programuming approaches based on state
parameterization have been described (Johnson 1969; Nair, 1969;
Yen and Nagurka, 1987). In these approaches, state trajectory
parameters of dynamical systems are adjusted by mathematical
prograroming. For example, Yen and Nagurka (1987) represent the
time ‘history of each generalized coordinate by an auxiliary
polynomial and a finite-term Fourier-type series. The free variables,
such as the (free) coefficients of the polynomial and the Fourier-
type series, are adjusted by a nonlinear programming method such
that the performance index is minimized. - The effectiveness of this
technique has been demonstrated by simulation studies (Yen and
Nagurka, 1987). A challenge of state parameterization relates to the

- problem of trajectory inadmissibility, i.e.,-due to constraints on the

control structure an arbitrary representation of the state trajectory
may not be achievable.

Finally, state and control parameterization approaches have

" been suggested. In (Vlassenbroeck and Van Doreen, 1988) the state

and control variables are both expanded in Chebyshev series and an
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algorithm is provided for approximating the system dynamics,
boundary conditions and performance index. Here the Chebyshev
coefficients are the free variables of the algebraic optimization
problem. Although an advantage of this approach is that it can
handle linear as well as nonlinear problems, the drawback is the
tedious analytical formulation required for different optimal control
problems (including unconstrained problems). The development of
a general computational tool based on this method is formidable.

Of the different mathematical programming approaches, state
parameterization offers two major advantages. First, boundary
condition requirements on state variables can be handled directly.
- Second, if the trajectory inadmissibility problem can be overcome,
the state equations can be used as algchraic equations and the
performance index can be evaluated efficiently. As a result, state
parameterization promises significant computational advantages
relative to other approaches.

The research reported here specializes the Fourier-based state
parameterization approach of (Yen and Nagurka, 1987) to linear,
time-invariant, dynamical systems with quadratic performance

indices. The method exploits the linearity of the system model and -

the quadratic nature of the performance index to guarantee
identification of a global minimum, while being computationally
very efficient.

)

'

METHODOLOGY . '

The behavior of a linear, time-invariant dynarmcal system is-

governed by the state-space model:

i(n) = Ax() + Bu(r) ' )

with initial conditions x(0) = where x is an N x I state vector
(i.e., a column vector of N state variables), ¥ is an L x I control
vector, A is an N x N system matrix, and B is an N x L control
matrix. In this paper, it is assumed that L<N, i.e., the number of
control variables is less than or equal to the number of state
variables.

The design goal is to find the optimal control u(t) in the time
interval [0, ] such that the quadratic performance index

7= SapHxp) + [Ti0x + WRUlE @

is minimized. Here, @ and H are real, symmetric, positive,
semidefinite matrices and R is a real, symmetric, positive definite
matrix. (T denotes transpose.) It is assumed that the state and
control vectors are not bounded, the terminal state X(ty is free, and
the terminal time tfls fixed.

Linear Systems with Nonsingular Control Matrix

This subsection considers the.case L = N, i.e., the state and
control vectors have the same dimension, and hence B is square.
Furthermore, it is assumed that B is nonsingular. The following
subsection addresses the case L<N.

The basic idea of the proposed approach is to approximate
each state variable by the sum of an auxiliary polynomial and a
finite term Fourier-type series, i.e., fori=1, ..., N,

v o @

2kmt
x(2) = 4(1) + Zalk cos-—t;— + thk sm—?f— 3)

where K is the number of terms included in the Fourier-type series
and d; is a third-order polynomial in time

di(t) = dig + dyyt + dipt? + diyt? )

" The four coefficients of this auxiliary polynomial can be written in

terms of four boundary conditions, i.e., initial conditions x{0) and
X{0) and terminal conditions x( tf) and x(tf) Explicit expressions
for these coefficients are given in Appendix A.

Equation (3) can be rearranged and presented in the form

X 'S
X{8) = P+ P X+ PoXyt Py, ‘*’,Z O @y fz B, bik ®

where ' x, = x;(0), Xp=X; (tf), and similarly Tor thc corresponding
time denvauves, and whcre

= (1-312+21%)x, 6)
by = (1-2+0)y, ' 0
p, = 318 - 27 = (-2 + 13){, (8),(9)
o, = cos(2knt) — 1 (10)
B, = sin(2kmt) — 2knt(l —~ 31 + 21?) an e

where © = (t/tf).

Since the terminal time & is assumed known, the parameters
defined in equations (7)-(11) are functions of time only, and are
state independent. Furthermore, since the initial condition x; is
given, p; in equation (6) is a known function of time.

From equation (5), the state variable x(z) can be written in
compact form as

0 = b+ 0y 12
where

p'=0[p, P2 Ps Oy ... O By ... Bl 1 (13)

and

=l %o Xy Xp @y ... Qg by ..o by 1T (14)

are vectors of dimension m=3+2 K.

The N state variables can be written in terms of state vector
x(),ie.,

xn = p® + 'Oy (15)
where ‘
0 =[x x0 ... x50 : 16)

p@® = [p@® pLD - . . oI 17
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Note that y is a column vector of dimension Nz and that p* is a
matrix of dimension N x Nm. Similarly, the time derivative of the
state vector,

i) = ¢ + SOy o

can be introduced, where

*

g=p , ¢ =p 21),22)

Since x(r) and X(z) are known functions of y , the control
vector u(t) can be expressed from equation (1) as a function of y.
Ultimately, the interest is to express the performance index as.a
function of y. Toward this end, the performance index of equation
(2) is decomposed into two parts:

J=0 + 0, ¥ 23)

where J, is the cost associated with the terminal state and J, is the
cost associated with the trajectory. The terminal state can be written
as a linear transformation of y, i.e.,

) = Zy o @4)

where Z is a N x mN matrix with elements 1 and 0, specified

according to
1, j=@-1)m+1 for i=1,...N

z., = _ 25)
- 10, otherwise

From equation (24), the cost J| is '
S Jy= A Hx(y) = YTZTHZY ~(26)

From equation (1) (for the control vector) and equations (15) and
{20) (for the state vector and its rate), the cost J, is

Iy = j;f [7Qx +u'Rulde = [ Ay+y T+E1de @7)
[t}
In equation (27)

A = * TEIQ‘ + g-‘ T—Fu-egi + g‘ TE_SQ' (28)

L=p'T(F+F)p+ 0 T(Fy+ F)g+ 0" Ep+p TFag (29)

Z =p'Fip + g"F,q + ¢"Fap (30

where F,, F,, and F; are constant matrices that depend on system
parameters and the performance index.

F, =0 + CTRC 31)

F, = (BYWWRB' , F; = 2(B"YRC (32),(33)
where

C = —-BA (34)

Since y is independent of time, equation (27) can be written as

J, = YAy + ¥I[* + & (35)
where
A = J“fédt , I = J"fzdt (36).37)
0 0
= Txdr (38)
0 .

Since J=J, +J, is quadratic in terms of y, the necessary and
sufficient condition for global minimum J, determined from

daJ _ :

- 0, (39)
is

[A" + AT + 2ZTHZ]y = - 40

Equation (40) represents a system of linear algebraic equations
with the number of equations equal to the number of unknown
variables, i.e., the elements of y. It can be solved using any of a
variety of linear equation solvers, such as Gaussian elimination
routines. In solving this equation for y, the integrals of equations
(36) and (37) must be evaluated. This can be done numerically or
analytically. The integrals have been evaluated in closed-form; a
sample integral table is shown in Appendix B.

An important feature of equation (40) is that the coefficient

- matrix of y is independent of initial conditions. The integrals A* are

independent of. initial conditions (whereas the integrals I are
functions of initial conditions, terminal time, and system
parameters.) Thus, for the same optimal control problem with
different initial conditions, the coefficient matrix remains the same;
only the right-hand side constant vector needs to be recomputed. As
a result, numerical algorithms such as LU decomposition (and linear
algebraic equation solvers based on matrix inversion) are
particularly efficient for recalculation of y for different initial

conditions. ;

General Linear Systems

The approach presented above is applicable only for systems
with square and invertible control matrices. - This subsection
generalizes the Fourier-based approach to the more common case of
general linear systems which have fewer control variables than state
variables. The dynamical system of interest is again the linear
structure described by equation (1). In this case, the control matrix,
B, is an'N x L matrix where the number of state variables, N, is
greater than the number of control variables, L.

: thation (1) can be written as.

i) = Ax(n) + BW() @1)




where

Leieny 5

B = E—(NxN) = 1B sy 42)
Owsn |

and

[ .
Rirxy

u = Uinzy = (43)
U(Lx1)

where I=N - L and the subscripts in the parentheses represent the
dimensions of the matrices. By introducing the artificial control
vector, ", the new control matrix, B’ , can be inverted enabling the
calculation of the control, u’
premultiplying equation (41) by (B')! gives

A'x(t) + B"x(1) = () 449
where

A =-B)'A , B" = @& (45).(46)

The new constant coefficient matrices can be partitioned, as follows.

At B
(IxN) =({IxN)
A = B I i (47),(48)
Ak *k
—A-(LxN) . é(LxN)

From equation (44) the artificial control vector ¥* can thus be
written as_ .

AT + BRD = SONES ' (49)

In actuality, the: amﬁcml control does not exist, and thus it is
requlred that

Ax) + BED) = 0 (50)

This' indicates that only trajectories satisfying equation (50) are
admissible for dynamical systems described by equation (1). In
other words, the system of N state variables possesses L "active"
state variables. Given trajectories of any L of the N state variables,
the trajectories of the remaining state variables can be determined
uniquely from equation (50) with all trajectones being admissible.

Due to the approximation of the Founer-based approach
equation (50) can not be satisfied exactly. However, by minimizing,
in a least squares sense, the contribution of the artificial control

variables, an equation similar to equation (50) describing linear

coupling between state variables can be derived. Thus, there are
two simultaneous objectives. One objective is to generate the near
optimal trajectories; the second objective is to minimize, in the least
squares sense, the contribution of the artificial control variables.

, for any given trajectory, i.e.,

A performance index, J¥, is proposed to represent thew
contribution of the artificial control variables.

e I .
o= jof > u ) 51

There are N vectors representing the free Fourier-based
variables, y;, ¥5, ... » Yy. 1 of these N vectors, i.e., ¥y, ¥3, - 5 ¥p» a1

- adjusted in such a way that J* is minimized. Setting the first

derivative of the performance index equal to zero

Sdar

for i = 12,..1 (52)
@y

gives a set of Im equations in the Nm unknowns (¥, ¥, » ..., ¥y Where
each y; has m elements.) Equation (52)-can be written as

‘Y4 = Dy, + D, (53)

where y, and ¥y are partitioned vectors of y according to

Yy = (6L
with
- Y Yra
Ll o ua
‘YA = . s XB =
(55),(56)
b2 2y

Equation (53) represents the coupling between the state variables
that minimizes the effect of ‘the artificial control variables on the
irajectories.

THREE TERM FOURIER~TYPE SERIES

CONTROL VARIABLE G

/— Riccati-Based Solution "
—— Fourier~Bassd Solutioh::

TIME

Figure 1a. Control Variable u, History for Example 1
(With Three Term Fourier-Type Series)




The performance index, J = J; +J, , can be written in terms of
y tecording to equations {26) and (35). In view of equation (54),

Jom J(y) = T, ¥s) 57)

which, from equation (53), can be written as

J = J(y,) - ) (58)

The necessary and sufficient condition of optimality can then be
expronsed as

dJ

=0, .
E 0 (59)
which represents Lm algebraic equations that can be solved to
determine y, . The remaining Fourier-based variables, y, , can then
b computed from equation (53). :

EXAMPLES
Esample 1: Linear System with Nonsingular Control Matrix

This example, which is an adapted version of an example
problem from (Kirk, 1970, .Example 5.2-2), considers a linear
dynamical system with two state and control variables

0 1 1 0 '
Lo N E A R (60)
2 -1 0 1|

with Initial conditions x0)=[-4 47 ,where x=[x;, xJ"
The problem is to determine the time history of the control vector u
@[y  w)]" that minimizes the performance index.of eqiiation (2)
where ‘ ‘

=0 , Q=diag(2,1] , R=diag[0.5,0.5] 61)

ind where the terminal time 7, = 5.

TIME

Ifigure 1b. Control Variable u, History for Example 1
{With Three, Five, & Seven Term Fourier-Type Series)

STATE VARIABLES

Table 1: Value of Performance Index as a Function of
Number of Fourier-Based Terms (X) for Example 1.

J; = 6.5830

Riccati

Number of Terms, K Jpyiorpacea  Percent Error

1  7.4145 12.63
2 6.7402 2.39
3 6.6245 0.630
4 6.5968 0.210
5 6.5885 0.084
6 6:5855 0.038
7 65843 0.020
8 6.5836 0.009
9 65834 0.006

The optimal solution ‘was determined by solving the Riccati
equation and by employing the Fourier-based approach. The time
history of the first control variable, u, , is shown in Figure 1a. The
Fourier-based solution with three terms (i.e., K = 3) compares quite

- favorably with the Riccati solution. = Figure 1b_shows the time
‘history of the second control variable, u,, from the Riccati solution

and from the Fourier-based approach with three, five and seven
terms.  There is an apparent-deviation from the Riccati: solution at
the endpoints. Furthermore; the Riccati solution shows that both
control variables approach steady-state values of zero after =2,
whereas the Fourier-based solutions are characterized by oscillatory
behavior. ' :

THREE TERM FOURIER~TYPE SERIES

/—Fourier-Basad & Riccati-Based X2
14 ¥ .

- TIME.

Figure Ic. State Variable History for Example 1
(With Three Term Fourier-Type Series)




Figure 1b suggests that the Fourier-based approach may be
lacking in accuracy, especially when few Fourier-type terms are
included. However, discrepancies of the control variables are not
fully reflective of the quality of the Fourier-based solution, as
demonstrated in Table 1 which lists the value of the performance
index as a function of the number of Fourier-type terms. With a
three term approximation, the Fourier-based solution deviates from
the "exact" Riccati solution by 0.63 percent, an inaccuracy well
within engineering tolerance. As a further indication of the
effectiveness of the proposed approach, the state variable histories
match those of the Riccati solution. Figure Ic shows the Riccati-
based and three-term Fourier-based state trajectories, x(z)and
x(1) .

Example2: General Linear System

In this example (Kirk, 1970, Example 5.2-2) the model is
represented by a single input, second order system, i.e., there are
two state variables, x; and x, , and one control variable, #. The
system matrix, A, the terminal state weighting matrix, H , and the
state weighting matrix, 0O, are the same as in Example 1. Here, the
control matrix is a vector, B = [0 1 JT , and the control
weighting matrix is a scalar, R = 0.5. As before, the terminal
time 7, = 5.

Using the approach outlined above for general linear systems,
an artificial control variable, u*, is introduced and a new control,
B’, is formed according to equation (42). Here, B',isa2x 2
identity matrix.  Following the procedure for simultaneous

optimization (equations (51) - (59)) the Fourier-based solution can

be obtained. ’

Figures 2a and 2b compare the control variable history from
the Riccati and Fourier-based methods with one and three ‘term
series, respectively. A ‘slight discrepancy is evident with the one-
term Fourier-type series (Figure 2a), whereas the three-term solution
(Figure 2b) appears coincident with the Riccati solution. The time
history of the corresponding artificial control variable for:the one
and three-term solutions is plotted in Figure 2c. As expected, the
artificial control variable based on three-term Fourier-type series is
closer to zero than the artificial variable based on the ‘one-term
serics. However, the magnitudes are small for both cases and hence
the influence of the artificial control variables on the system
dynamics is negligible.

ONE TERM FOURIER~-TYPE SERIES

CONTROL VARIABLE

Riccati~Based Solution
Fourier~Based Solution

]

TIME

Figure 2a. Control Variable History for Examiple 2
(With One Term Fourier-Type Series)

DISCUSSION

The Fourier-based state parameterization approach presented
in this paper applies to unconstrained linear optimal control
problems with quadratic performance indices. The parameters, i.e.,
the elements of y , include the free boundary conditions and the
coefficients of the Fourier-type series. The optimal control is found
by solving for the "optimal" values of these parameters such that a
performance index is minimized.

The approach is applicable to high order systems and to
systems with highly penalized terminal state variables (and rates).
Unlike variational approaches, the approach does not require
integration of differential equations. The optimal (or more
correctly, near optimal) solution is obtained by solving a system of
linear algebraic equations for free, time-independent parameters.
As aresult, the approach is computationally very efficient.

By modifying equations (15) and (20), it is possible to apply
the method to systéms with fixed terminal conditions. For example,
if the terminal state variable Xy is given, then the term pyx; is
known, and one element of equation (15) can be written as:

x(0) = [Di+pxl+(py P3 Py OO Byo.. Pyl

%, A':,f Qy...ax by... bul” 62)
Note that p, and x; have been removed from equations (13) and
(14), respectively, smce Xy is no lonaer a free variable.

In the same fashion, problems with fixed initial or terminal
state variable rates (ie, X, or X, known) can be handled. In
practice, once the fixed boundary conditions are identified, the
corresponding rows and columns can be extracted from. the
coefficient matrix of y in equation (40) and the contributions of the
extracted columns can be subtracted from the corresponding
elements of the right-hand side column vector. Using this
technique, the same computer -routines can be used to handle
problems with both fixed and free boundary conditions, eliminating
any additional analytical work. Furthermore, problems with linear
equality constraints on the boundary -conditions (e.g.,
x,(y) +x,( t,)= 1) can be handled in the same manner.

THREE TERM FOURIER-TYPE SERIES

Fourier-Based & Riccati-Based Solution

CONTROL VARIABLE U

TIME
Figure 2b. Control Variable History for Example 2
(With Three Term Fourier-Type Series)
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Figure 2¢. Artificial Control Variable History for Example 2
(One and Three Term Fourier-Type Series)
CONCLUSIONS

The formulation introduced in this paper represents a
computationally efficient alternative to standard approaches for the
golution of optimal trajectories of linear time-invariant dynamical
systems with quadratic performance indices. The approach relies on
4 Fourier-based approximation of the state vector. The performance
index, which initially is written as a quadratic functional (i.e., a
function of state and control variables which themselves are
functions of time), is converted into a quadratic function (i.e., a
function of time-independent parameters of the Fourier-based
approach). By differentiating this quadratic function with respect to
the free parameters, the necessary and sufficient condition of
optimality is derived as a system of linear algebraic equations which
¢an readily be solved.

A major advantage of this approach relates to the ease with
which the optimal state and control solutions can be found, i.e., by
solving a system of linear algebraic equations. In.contrast, standard
optimal control methods typically require the integration of
differential Riccati equations. A second advantage of the approach
{s that it can handle both free and fixed boundary conditions on the
state vector, in contrast ‘to linear optimal control methods that
¢annot account directly for boundary condition requirements.
Finally, the approach promises to be a useful tool for linear
guadratic regulator design, a feature that will be explored in a
subsequent paper.
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APPENDIX A: Aucxiliary Polynomial Coefficients

The coefficients of equation (4) are determined from the
boundary conditions of x; , i.e., x{0), i{0), x{t), and %(1),
giving rise to four simultaneous algebraic cquanons which can be
solved for:

K
dig = X0 — Y, 0y (A-1)
k=1
o TCX
dy = %o — > kb, (A-2)
e
X -1
dis = 3(nx0) E2-2 (g +A~67Y kb )G (4-3)
k=1 .
iy = 200X E 4Gt~ 41cZkb‘k)tf (A4

where x;, = x (0), X=X (tf), and similarly for the corrcspondmg
time dcnvauves . .

APPENDIX B:

Sample Integral Table

Evaluation of A}= [ SR TE,ptdr

(v,=2nk)
¥
(] L wdr
2
P (m)?
P1P2 )'[z
P1Ps (- m)'!
A (—)t,
P2P3 <'§’1'5)’/
(5 =7
1 1
P1% + ~P30 "(; + l—j)rfz
&
XA by
277
PiB: . psBy (-»———)2
v
- PoB, -(-‘;+ )y + (140)% ._
&
aB, 0
o, , jEk K
oy | j=k &
BB, . jek [~2—:b'-v,~v,, —"12(-‘2 + ff)]y,
% 9
N 1 \7 \/
P v J=k —V. Y, - & ( 1
» B,}ﬁt J | [2‘10“'1"‘; 12(v’ + ;,‘)]'I + (i),(,

Y v




