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The method is based on a modified Fourier series approximation of each state variable
that converts the linear quadratic (LQ) problem into a mathematical programming
problem. In particular, it is shown that an unconstrained LQ problem can be cast
as an unconstrained quadratic programming problem where the necessary condition
of optimality is derived as a system of linear algebraic equations. Furthermore, it
is shown that a linearly constrained LQ problem can be converted into a general

quadratic programming problem. Simulation studies for constrained LQ systems,
including a bang-bang control problem, demonstrate that the approach is accurate.
The results also indicate that in solving high order unconstrained LQ problems the
approach is computationally more efficient and robust than standard methods.

Introduction

The optimal control of linear, lumped parameter, dynamic
systems is the subject of much theoretical and practical interest,
and is well covered in many textbooks (e.g., Athans and Falb,
1966; Kirk, 1970; Sage and White, 1977; Lewis 1986). Typi-
cally, the necessary condition of optimality is formulated as a
two-point boundary-value problem (TPBVP) using variational
methods. Except in some special cases, the solution of this
TPBVP is usually difficult, and in some cases not practical,
to obtain.

In contrast to variational methods, trajectory parameteri-
zation represents a distinct approach toward the solution of
optimal control problems. In general, these techniques ap-
proximate the control and/or state vectors by functions with
unknown coefficients, thereby converting an optimal control
problem into a mathematical programming (MP) problem. A
near optimal solution can then be obtained via various well
developed optimization algorithms. For example, quadratic
programming has been used to solve parameterized linear op-
timal control problems (Canon and Eaton, 1966; Blum and
Fegley, 1968; Jizmagian, 1969; Bosarge and Johnson, 1970;
Neuman and Sen, 1973). A survey of work done prior to 1970
can be found in (Tabak, 1970); a later study can be found in
(Kraft, 1980). Theoretical aspects of solving optimal control
problems via trajectory parameterization are also covered in
(Canon et al., 1970; Tabak and Kuo, 1971; Luenberger, 1972;
Evtushenko, 1985).

A direct application of trajectory parameterization is to par-
ameterize the control variables. For example, after representing
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the control variables by a sequence of eigenfunctions with
unknown weighting coefficients, a linear or nonlinear pro-
gramming algorithm can be used to determine the coefficients
(i.e., control parameters) such that a performance index is
minimized. A difficulty with control parameterization occurs
in determining the functional relationship between state vari-
ables and control parameters. The process of determining this
relationship can be analytically cumbersome and most often
requires numerical integration of the state equations that can
be computationally intensive and sensitive to numerical errors.
Approaches based on state parameterization have been de-
scribed (Johnson, 1969; Nair, 1978; Yen and Nagurka, 1988,
1989; Nagurka and Yen, 1990). In these approaches, state
trajectory parameters are adjusted by MP algorithms in order
to minimize a performance index. For example, Nagurka and
Yen (1990) present a nonlinear programming approach for
determining the near optimal trajectories of linear and non-
linear dynamic systems. They motivate the use of a fifth-order
polynomial appended to a Fourier series to represent each
generalized coordinate. This representation is used to convert
an optimal control problem into an algebraic optimization
problem. The free variables, such as the free coefficients of
the polynomial and the Fourier series, are adjusted by a non-
linear programming method to minimize a performance index.
Two numerical schemes (the Powell and the Simplex methods)
are tested on unconstrained and constrained, linear and non-
linear, and fixed and free terminal time, optimal control prob-
lems. The results suggest that the Fourier-based method is
accurate for solving such problems, except bang-bang type
control problems. A general challenge of state parameteriza-
tion involves the problem of trajectory inadmissibility, i.e.,
due to constraints on the control structure an arbitrary rep-
resentation of the state trajectory may not be achievable.
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Finally, combined state and control parameterization ap-
proaches have been suggested. In (Vlassenbroeck and Van
Dooren, 1988) both the state and control variables are ex-
panded in Chebyshev series. Although their approach can han-
dle linear as well as nonlinear problems, it requires the
approximation of the system dynamics, boundary conditions,
and performance index, involves tedious analytical formula-
tion for different optimal control problems, and increases the
number of unknown variables of the converted MP problem.
In general, the number of free variables is typically higher than
the number employed in either state or control parameteri-
zation approaches.

Of the different trajectory parameterization approaches,
state parameterization offers two major advantages. First,
boundary condition requirements on the state variables can be
handled directly. Second, if the trajectory inadmissibility prob-
lem can be overcome, the state equations can be used as al-
gebraic equations. As a result, the process of determining the
functional relationship between the state and control vectors
is easier to implement in state parameterization than in control
parameterization.

This research is part of a broader effort toward the devel-
opment of a computational tool for solving optimal control
problems via state parameterization. As part of this effort,
this paper presents a specialized version of the Fourier-based
state parameterization approach (Nagurka and Yen, 1990) for
determining the optimal trajectories of linear systems described
by state-space models with quadratic performance indices and
linear constraints. The approach employs a third-order poly-
nomial appended to a Fourier-type series to represent each
state variable. For the unconstrained optimal control problem,
a system of linear algebraic equations is derived as the condition
of optimality from which the near optimal state and control
trajectories can be determined. For the linearly constrained
problem, the LQ problem is converted to a quadratic pro-
gramming problem which can be solved by well developed
routines. Example problems demonstrate the high accuracy,
computational efficiency, and robustness of the method. Sim-
ulation studies for constrained LQ systems are included in two
examples, one of which addresses the applicability of a multiple
segment (i.e., splined) Fourier-based method for solving bang-
bang control problems.

Problem Statement

The behavior oi'/av. linear dynamic system is described by the
state-space model

x(t)= AOx()+B(Hu® n

with known initial condition x(0) = x, where x is an N x [ state
vector, u is a J %/ control vector, A is an N x N system matrix,
and B is an NxJ control influence matrix. For now, it is
assumed that J=N and B is invertible, implying that every
state variable can be ‘““‘actively’’ controlled. These assumptions
will be relaxed later.

The design goal is to find the control u(f) and the corre-
sponding state trajectory x(¢) in the time interval [0, 7] that
minimizes the quadratic performance index, L,

L=L+L, @)
where L, is the cost associated with the terminal state
L, =x"(NHx(T)+h’x(7) €)}

and L, is the cost associated with the trajectory

T
Ly= 50 xT()Q()x(1) + w (OR(Du() + xT()S(P)u(?)

+q7(Ox(t) +r(Hu())dt @)
without violating the linear system constraints:
E (Ox(7) + Ex(u(t) < e(1) )
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It is assumed that the matrices H, Q, R, and S and the vectors
h, q, and r are real and have appropriate dimensions with H
and Q being positive-semidefinite and S being positive definite,
e is an O X I vector, E, is an Ox N matrix, and E, is an OxJ
matrix. In addition, the terminal time 7 is assumed fixed.

Fourier-Based State Parameterization

The basic idea of Fourier-based state parameterization is to
approximate each of the N state variables x,() by the sum of
a third-order auxiliary polynomial §,(#) and a X term Fourier-
type series, i.e., for n=1,...,N,

K K
2kxt . [2kxt
Xa(1)=0,()+ Z A COS (_T ) + Zb,,,,sm (_T ) 6)
k=1 k=1
where
6x()= 8,,0 + 8,,1[ + 6,,1’2 + 6,,311 @)

The inclusion of the auxiliary polynomial in this representation
ensures convergence on [0, 7] (not just (0, 7)) for x, and x,
and improves the speed of convergence (making it three orders
faster) in comparison to a standard Fourier series expansion
(Yen, 1989; Nagurka and Yen, 1990). _

The four coefficients of the auxiliary polynomial ,(¢) can
be written as functions of state variable boundary values and
Fourier coefficients.

L3 . 2 &
0no=Xno— Zank, Om = xno‘? Z kb (8a,8D)
k=1

k=1

K
a2 =3 | Xnr=Xno+ 4% D | kb | T2 = 2(%no+ Xa)T~ (8¢)
k=1

K
8n3=2| Xnz— Xno + 2% D Kbk | T7> + ((no + Xa)T~*  (80)
k=1
where X5, Xno» Xa1» and X,r are the boundary values
xno=xn(0)r x.'no=in(0)» Xpr=Xp(T), i'r|7'= xn(n (%a-d)

Following substitution of equations (7) and (8) into (6), equa-
tion (6) can be rearranged and presented in the form

X
Xn(1) = P1Xno + P2Xno + P3XnT + PaX a7+ Z (ax@nk+ Bibn)  (10)
k=1

where

o1=1-372427, po=(r-21*+T (11a,b)

p3=37=27, pa= (-7 + )T (11¢,d)

ag =c0s (2kx7)— 1, B =sin (2kx7)— 2kxr(l — 37+ 27%) (lle,))
with

t

T=—

T
The parameters defined in equations (11a-f) are state inde-
pendent and, since the terminal time T is known, are functions
of time ¢ only.
Equation (10) can be written compactly as

(12)

x(t)=cT(D)yn a3
where
cO=1p1 p203 P4 1 ... ag By ... Bx) (14)
and
Yn={Xno Xno XnT XnT Gn1 -+ Gnk By ... bpx]”
= Wnt Va2 -+ Yot (15)

are vectors of dimension M =4+ 2K. The first four elements
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of y, are the values of x, and x, at the boundaries of [0, T];
the remaining elements are the coefficients of the Fourier-type
series. Vector y, can be viewed as a time-independent state
parameter vector for x,(f) since it characterizes the trajectory
of the n-th state variable over the time interval [0, 7]. (Note
that the first element is a given initial condition.) The ultimate
objective is to determine the optimal state parameters for all
state variables that minimize the performance index. This goal
is achieved by first relating the state vector, its rate and the
control vector to a state parameter vector for x(f).

The state vector containing the N state variables can be
written as

x(t)=C()y (16)
where
e’ 0 Vi Dt oo yind”
T T
c
c= ' = V2| _ D ... yaml (17a,5)
0 < N, nt oo Y

Vector y, the state parameter vector for x, is a column vector
of dimension NM; matrix C is a time dependent matrix of
dimension NxNM. By direct differentiation, the state rate
vector can be written as
x(1)=D(0)y (18)
where
ar 0
dT
D) =C@)= . , (19)

0 da’

The control vector u(f) can also be expressed as a function of
y. From equation (1)

u(®) =B~ '(Ox(0) + V(Ox(D) 20)
where
V()= -B ' (DAW® @
Substituting equations (16) and (18) into equation (20) gives
u() =[B” (D) + V(HCDly 22

Thus, using the Fourier-based state parameterization ap-
proach the state vector, state rate vector, and control vector
can be represented as functions of the state parameter vector.
It is shown in the following sections that by employing this
representation LQ problems can be reformulated as QP prob-
lems with the elements of the state parameter vector y being
the free variables.

Unconstrained LQ Problems

This section (i) demonstrates the conversion process from
an unconstrained LQ problem to a QP problem via Fourier-
based state parameterization, and (ii) develops an appropriate
solution procedure. It is shown that the converted QP problem
can be formulated as an unconstrained optimization problem
with a quadratic objective function.

Conversion Process. The first step in the conversion is to
rewrite the performance index as a function of state parameter
vector y. The terminal state part of the performance index L,
can be written as a function of y by noting the following linear
relation for the terminal state vector

x(T) =By 23
where O is a transformation matrix specified according to
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24
0 otherwise @4

N {l m=@n-1)M+3forn=1, .., N
nm=

By substituting equation (23) into equation (3) the cost L, is
L,=y"(6"HO)y + "0y 25
Similarly, the trajectory part of the performance index L, can
be written as a function of y, although the process is somewhat
more complicated. Substituting equation (20) for the control

vector into the integrand of equation (4) gives:

x"Qx+u'Ru+x"Su+q'x + rlu=x"P;x + P,

+x"Px+x"p, + x"p,; (26)
where
P;=Q+V'RV+SV, P,=B""RB~!, P,=2B"'RV+B~'S
(27),(28),(29)
Pi=q+V'r, p;=B"r (30),(31)

where matrices P, P,, and P; and vectors p, and p, depend
on system parameters and performance index weighting. Su-
perscript — T denotes inverse transpose. (For simplicity, the
time-dependent symbol (#) has been omitted in the above equa-
tions.) By substituting equations (16) and (18) for the state
vector and its rate, respectively, into equation (26), the inte-
grand of the performance index can be expressed as a function
of parameter vector y, i.e.,

x'Qx+u'Ru+x"Su+q"x+rTu=y"Ay+yT (32

where .
A=P,®cc’+P,®dd"+ P;®@dc” (33)
F=p;@c+p.@d (34

In equations (33) and (34), ® is a Kronecker product sign (see

Brewer, 1978). Thus, from equation (32), the integral part of
the performance index can be expressed as

T
L=| Ay +Ty)dr=y A"y +TTy 35)
0
where

T T
A*= g Adt= S P,Qcc’+P,Rdd"+P;®dcNdr  (36)
(] 0

T T
r*= g Idt= S P:®c+p,Qd)dr 37
0 0

For problems with time-varying system parameters and/or
performance index weighting, P,, P,, P;, p;, and p; are func-
tions of time and the integrals of equations (36) and (37) can
be evaluated numerically. For time-invariant problems, P, P5,
P;, pi, and p, are constants and can be removed from the
integrals, enabling the remaining integral parts of A* and I'*
to be evaluated analytically. That is, for time-invariant prob-

lems equations (36) and (37) can be rewritten as

T T
A*=P,® [ So (ce’)dr] +P,® “0 (ddT)dt]

T
+P;® [So (dc’)dz] (38)

T T
r=p® [So cdt] +p:® I: So ddt] 39)

The integrals in the brackets of equations (38) and (39) have
been evaluated in closed form (Yen, 1989). As a result, the
Fourier-based approach is numerically integration-free in han-
dling time-invariant problems.

In summary, by substituting equations (25) and (35) into
equation (2), the performance index L can be written as a
quadratic function of the state parameter vector y.
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L=y Q*y+yTw* (40)
where
0*=0"HO+A*, w*=0"h+T* (41),(42)
The optimization problem can thus be viewed as the search
for the elements of y, i.e., ¥pm, n=1,..., N, m=1,..., M, that
minimizes the performance index of equation (40) subject to
the equality constraints
Ym=Xp forn=1,..., N 43)
representing the initial conditions.

Solution Procedure. This subsection outlines an approach
for solving the equality constrained QP problem (outlined
above) by converting it into an unconstrained QP problem.
To accomplish this goal, a new state parameter vector z is
introduced, specified as

Z)
2= ZJ “4)
where
2] =[a"b k] xTx7], 22=%, (45),(46)
with
Xo=[X10 X20 oo xNo]T9 'xo= [ilo *.'20 ‘\"Na]T (47),(48)
xr=[xrxr ... xvrlTy Xr=[X11 Xar ... Xnrl” (49),(50)
a=[ay ... qix dy ... Qog o any ... anxl” 'C3))
b=[by ... bik by ... bax ...... bt ... bkl (52)

Vector z, contains the known initial values of the state vector;
vector z, is the remaining subset of the parameter vector y
(i.e., obtained by excluding z, from y).

The two vectors z and y are related via a linear transfor-
mation

y=%z (53)

where ® is a NM x NM matrix with elements 1 and 0. The
performance index L of equation (40) can thus be rewritten as
a function of z

L=2"0z+2"w (54)
where ‘ B
0=3"0®, w=2"w* (55),(56)
By expanding equation (54), the performance index can be
expressed as
Qy Qg lz
L=[z 21" :J j+[z.’ 2]] “’j (57
O Onlz W

or equivalently
L=2102, +2] Q2+ Q)2 + 2] Aty + 2] + 2wy (58)

The performance index of equation (58) is a quadratic function
of z,, the unknown part of the state parameter vector. For an
unconstrained LQ problem, the necessary condition of opti-
mality can be obtained by differentiating the performance in-
dex with respect to this unknown state parameter vector. The
result is the system of linear algebraic equations

@ +9)z= - Q2+ 0z - @, 39

from which the unknown vector z, can be solved directly by
a linear algebraic solver, such as a Gaussian elimination rou-
tine.

If the terminal condition of the state vector is known, the
same solution procedure can be applied. The only modification
is to redefine the unknown vector z, as

z,=[a" bT x] x77 (60)
and the known vector z; as
T T
2= [XT X,] (61)
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Similarly, problems with fixed initial and/or terminal state
rate vectors can handled.

An interesting feature of equation (59) is that the coefficient
matrix of z, is independent of known boundary values (i.e.,
z,). Thus, for the same unconstrained LQ problem with dif-
ferent boundary values, the coefficient matrix remains the
same; only the right-hand side constant vector needs to be
recomputed.

Linearly Constrained LQ Problems

In this section, the Fourier-based state parameterization ap-
proach is used to convert a linearly constrained LQ problem
to a QP problem. In particular, the system constraints of
equation (5) are converted into a system of linear algebraic
constraints.

The approach is to substitute equation (20) into the ine-
quality constraints of equation (5) giving

Fi()x(t) + Fy()x (D) <e(r) (62)

where
F(()=E(()+Ex()V(), Fa() =E,(NB~'(t)  (63),(64)

Using the state parameterization of equations (16) and (18) in
equation (62) gives .

Gyse() O (69)
where
G(1) =F\()C(t) + F()D(?) (66)

The constraints of equation (65) are functions of time. Con-
sequently, equation (65) represents an infinite number of con-
straints which need to be satisfied along the trajectory. For
practicality, these constraints are relaxed to be satisfied only
at a finite number of points (usually chosen to be equally
spaced) in time. That is, equation (65) is replaced by a finite
number of algebraic inequalities

G(t)y<e(t) fori=1,..., I 67
where I is the number of sampling points for which the con-
straints need to be satisfied. In terms of the alternate state
parameter vector z, equation (67) can be rewritten using equa-
tion (53) as :

G*(t)z<e(t) fori=1,..., I (68)
where

G*(1)=G()® 69

By decoupling z into z, and z,, the inequality constraints of
equation (68) can be represented as

Gh(t) GH() z) et) .
[Gz‘l(’i) Gz'z(n)] [lz]s [ez(li)] fori=1,....I(10)

Since z; is known, the corresponding terms can be moved to
the right-hand side of equation (70) giving

{Gf I(ti)l e (1) - Gl'z(ti):]
Z) < fo
G3(1) ex(t) — GL(1)

Thus, the system constraints of equation (5) can be approxi-
mated by the linear algebraic inequalities of equation (71).

In summary, by applying Fourier-based state parameteri-
zation, a linearly constrained LQ problem can be converted
into a QP problem in which the quadratic function of equation
(58) is to be minimized without violating the system of linear
algebraic constraints of equations (43) and (71).

ri=1,.,1 an

Fourier-Based Approach for General Linear Systems

The approach presented above is applicable to systems with
square and invertible control influence matrices. For general
linear systems, the control influence matrix B, is an NxJ
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matrix where the number of state variables, N, is greater than
the number of control variables, J. This section generalizes
the Fourier-based approach to the more common case of gen-
eral linear systems which have fewer control variables than
state variables. It is assumed that the rank of B is equal to J.

To apply the Fourier-based approach, the state-space model
of equation (1) is first modified to

x(D=A@Ox(+B'(Hu’() (72)
where
Lknv-nxv-n
BI(’)=BINXN= Byxs 73)
O x (N-0)
and
a(N—J) x1

uw(O)=u'yy= (74)

Wy

with the subscripts representing the dimensions of the matrices.
By introducing an artificial control vector, @(#), the new control
influence matrix, B’, can be inverted enabling the calculation
of the control, u’(¢), for any given trajectory (similar to equa-
tion (20)). Note that it can be guaranteed that B’is invertible
if the last J rows of B are nonsingular. However, if the last J
rows are singular, the first (N—J) columns of B in equation
(73) can always be modified to make it invertible since it has
been assumed that B has rank J.

In order to predict the optimal solution, the performance
index (for the case S=0, q=0) is modified to

T
L'=L+w S a7 (adt 79
0

where L is the performance index of the original LQ problem
and w is a weighting constant chosen to be a large positive
number. The integral term associated with w is used to rep-
resent the contribution of the artificial control.

The advantage of using artificial control variables is that a
nonactively controlled system can be converted into an actively
controlled system to which the Fourier-based state parame-
terization approach is applicable. The tradeoff is that the re-
sulting solution will not, in a strict mathematical sense, satisfy
the trajectory admissibility requirement (see Yen and Nagurka,
1988) due to the existence of the physically non-existent arti-
ficial control. However, by employing the penalty function of
equation (75), the magnitude and influence of the artificial
control variables can be made insignificant and the solution
of the modified optimal control problem can closely approx-
imate the solution of the original LQ problem.

Simulation Studies

In the simulation studies reported here, the solutions of time-
invariant LQ problems are obtained by Fourier-based state
parameterization and compared with closed-form optimal so-
lutions or solutions from standard numerical algorithms. Ex-
ample 1 is designed to study the effectiveness of the Fourier-
based approach in solving unconstrained LQ problems. Ex-
amples 2 and 3 are used to study the effectiveness of Fourier-
based state parameterization in handling linearly constrained
LQ problems. In particular, Example 2 considers a LQ problem
with a linear state constraint, whereas Example 3 examines a
problem with a bounded control variable.

In the first example, the Fourier-based approach is compared
to a transition matrix approach, which was applied to generate
the state and control variables at prespecified equally-spaced
points in time. An overview of the transition matrix approach
for unconstrained LQ problems is presented in Appendix A;
additional details can be found in (Speyer, 1986). In the last
two examples, the QP solution algorithm developed by Gill

210/ Vol. 113, JUNE 1991

and Murray (1977), considered to be one of the most efficient
algorithms for QP problems, was implemented to determine
the optimal state parameters of the Fourier-based approach.

Efforts were made to optimize the speed of the computer
codes, all of which were written in ‘“C.’’ The simulations were
executed on a SUN-3/60 workstation.

Example 1. This example considers an N input Nth order
linear time-invariant dynamic system expressed in canonical
form

x=Ax+Bu, x’(0)=[12... M (76)
where
0 1 0 ]
0 0 1 . :
A=]; 0 ,B=Ivany (D)
0 0 .. 0 1
1 -2 .. (- VN

The problem is to determine the control vector u that minimizes
the performance index

1
L=x"()Hx(1) + S (x7Qx + u'Ru)dt,
0

H'—_lOleN, Q=R=leN (78)

A computationally efficient method for solving this uncon-
strained LQ problem is the transition matrix approach de-
scribed in Appendix A. The transition matrix approach converts
an optimal control problem into a linear TPBVP (such as
equation (A-9)). By evaluating the transition matrix of this
boundary value problem, the problem can be reformulated as
an initial value problem. In this study, the transition matrices
were computed numerically using the algorithm presented in
(Franklin and Powell, 1980, pp. 176-177). The system response
was obtained at 50 equally-spaced points.

This unconstrained LQ problem could also be solved by
integrating the Riccati equation. Although the Riccati method
puts the optimal solution in closed-loop form and is thus a
preferred approach for physical implementation, it is com-
putationally more intensive than the (open-loop) transition
matrix approach. Since the design of an optimal LQ controller
is often an iterative process, the transition matrix approach is
thus a more efficient investigative tool than a Riccati equation
solver.

In addition to the transition matrix approach, the Fourier-
based approach involving a two-term Fourier-type series was
used to solve this problem. The integrals of equations (38) and
(39) were determined directly via table look-up. The linear
algebraic equations (59) representing the condition of opti-
mality were solved using a Gauss-Jordan elimination routine
for the optimal state parameter vector. This vector was used
in equation (54) to determine the value of the performance
index. .

Simulation results for N=2, 4,..., 20 are summarized in
Table 1 where execution time (in seconds) is used as an index
of computational efficiency. The results demonstrate that the
Fourier-based approach is both efficient, especially in solving
for the optimal control of high order systems, and accurate
(i.e., the error of the performance index is always less than 1
percent). In comparison to the transition matrix approach, the
Fourier-based method is increasingly more efficient for N> 6.
For N=20 the Fourier-based results suggest a 39 percent re-
duction in execution time. For N< 6, the Fourier-based method
is less efficient than the transition matrix approach, since the
time to evaluate the integrals from the table look-up, a fixed
time for any order system, is a significant fraction of the overall
computational cost. For high order systems the principal com-
putational cost is due to the solution of the linear algebraic
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Table 1 Summary of simulation resuita of example 1

Transition-Matrix Approach | Fourier-Based Approach® Comparison

N |Performance Index | Time |Performance Index | Time | %Time® | %AL®

2 5.3591 0.18 5.3591 030 | 167 [<37x10%8
4 44.250 0.66 44,250 08| 130 |<llx103
6 153.76 1.88 153.76 196 ] 104 |<39x103
8 373.02 4.26 373.06 3.80 89 <1.1x102
10 741.61 7.94 741.77 6.46 81 <22x 102
12 1299.4 14.14 1299.9 10.67 75 <36x102
14 2086.4 22.61 2087.7 16.04 71 <6.4x 102
16 3142.8 34.34 3145.8 22.84 67 <9.5x 102
18 4509.1 48.40 4514.9 31.28 64 [<13x10!
20 6225.4 68.95 6235.9 42.20 61 <17x10!

“With single segment two-term Fourier-type series

bPercent of execution time of Fourier-based approach relative to execution time of
transition-matrix approach

Percent difference of performance index of Fourier-based approach relative to perf

index value of transion-matrix approach
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equations (59), which is less intensive than the solution via the
transition matrix method.

The time histories of the state and control variables for the
case N=2 are plotted in Figs. 1(a) and 1(b), respectively. The
response curves from the transition matrix and Fourier-based
approaches drawn in these figures are almost indistinguishable.
Hence, the Fourier-based solution achieves convergence on the
trajectories of the state and control variables as well as on the
performance index.

In addition to improved computational efficiency with sat-
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isfactory accuracy, the Fourier-based approach is robust in
generating the system response for high order systems. To study
robustness, simulations were conducted for the high-order cases
N=20, 21,..., 30 using the transition matrix and Fourier-based
approaches. The results shown in Figure 2 suggest that the
transition matrix approach becomes unstable for such high
order systems. The figure shows a measure of the relative error
of the performance index (log;o(AL/L) where AL is the absolute
difference of the values of the performance index from the
Fourier-based and transition matrix solutions) as a function
of N. In the Fourier-based approach the relative error is roughly
constant as the system order becomes high. In contrast, in the
transition matrix approach, the relative error increases (trend-
wise) with system order and becomes quite significant. For
example, for N=23, the relative error measure log,o (AL/L)
is larger than zero, implying that the relative error of the
performance index predicted by the transition matrix approach
exceeds 100 percent! The error increases dramatically with
system order, indicating that a numerical instability problem
has been encountered. This problem is caused principally by
theerror in computing the state transition matrix of the TPBVP
(equation (A-9)). There does not seem to be a computationally
efficient solution approach to overcome this numerical diffi-
culty (Moler and Loan, 1978).

In summary, the Fourier-based approach offers advantages
in terms of computational efficiency and numerical robustness
relative to the transition matrix approach.

Example 2. This example, adapted from (Evtushenko,
1985, p. 438), considers a time-invariant LQ problem with a
time-varying state constraint. The system involving two state
variables and a single control variable is described by

HE RSN R

It is required to find the solution that minimizes the perform-
ance index

1
L= 5 [ + X3 + 0.005)dt (80)
0
without violating the constraint
x(D)<e(t) @31
where
e =8(t-0.5>-0.5 (82)

In (Evtushenko, 1985), this problem was solved using a
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Table 2 Summary of simulation resuits of exampie 2

K Performance Index

3 0.17480

4 0.17268

5 0.17115

6 0.17069

7 0.17069

8 0.17028

9 0.17013
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Fig. 3 State variabie x, history for example 2

control parameterization approach. Here, the problem was
solved using the Fourier-based approach for a general linear
system with a weighting coefficient of w=10° to penalize the
artificial control. The resulting values of the performance index
for three to nine term Fourier-type series are summarized in
Table 2. As shown in this Table, the performance index values
decrease as the number of terms of the Fourier-type series
increases. In particular, the Fourier-based solutions with series
of six and more terms are less than the minimum performance
index of 0.17114 obtained by Evtushenko (1985). Furthermore,
the differences between the Fourier-based solutions are small
(for example, the difference between the eight and nine term
Fourier-based solutions is less than (0.09 percent) suggesting
that convergence has been achieved.

The response history for x,(f) obtained with a three term
Fourier-type series is plotted in Fig. 3. The constraint history
and the solution computed by Evtushenko (1985) are also plot-
ted in this figure. The Fourier-based solution satisfies the state
constraint and closely approximates the trajectory predicted
by Evtushenko. In fact, the Fourier-based solution appears
indistinguishable from Evtushenko’s solution when the state
constraint is active. To verify that the artificial control variable
technique is successful, the history of the artificial control
variable for a three term Fourier-based solution has been plot-
ted in Fig. 4. As shown in the figure, the artificial control
variable is small in magnitude (on the order of 10~°). Hence,
it has minimal influence on system performance.

In summary, this example demonstrates the applicability of
the Fourier-based approach for handling LQ problems with
state inequality constraints. For the problem studied, the Four-
ier-based approach yields higher accuracy in predicting the
optimal solution in comparison to a previous result.
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Tabie 3 Summary of simulation results of example 3

K Performance Index
8.309
7.997
7.014
6.611
6.477

6.307
6.152

O |o [N v e lw

Example3. This example, adapted from (Leondes and Wu,
1971), considers another single input second order system

J'tj 0 1 )?j 0] x1(0) O.231]
= RN = (83)
X: -1 1ji{x 1 x3(0)] (1.126

The performance index is

l 5
-2 jo b3+ dldr

(84)

A constraint is imposed on the control variable
lul<0.8

The optimal solution, as computed by Leondes and Wu (1971),
has a bang-bang nature, i.e.,
) {—o.s for 0st<1.275 86
0.8 for 1.275<¢<5.0 ®6)
The corresponding value of the performance index is 5.660.

This problem was first solved using the Fourier-based ap-
proach for a general linear system with a penalty weighting
coefficient of w=10°. The values of the performance index
obtained by using a three to nine term Fourier-type series are
tabulated in Table 3. The near optimal solutions generated by
the Fourier-based approach converge to the optimal bang-bang
solution as the number of terms of the Fourier-type series
increases. However, the speed of convergence is quite slow
(with a three term Fourier-series the error in the performance
index is 47 percent; with a nine term series the error is 9
percent).

This phenomenon of slow convergence is also evident in the
control variable histories. The histories obtained using three,
six, and nine term Fourier-series are plotted in Fig. 5(a). The
bang-bang optimal solution is also provided in this figure. The
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principal reason for the slow convergence of the Fourier-based
approach is due the instantaneous switch of the optimal control
solution at t=1.275. The Fourier-based solution assumes con-
tinuity of each state variable, each state variable rate, and
hence each control variable throughout the trajectory. Since
this assumption is violated, significant discrepancies between
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the optimal and Fourier-based solutions can be observed in
the neighborhood of the finite jump.

One remedy of this slow convergence is to generalize the
‘“‘single’’ segment Fourier-based approach developed in this
paper to a ‘“‘multiple’’ segment Fourier-based approach which
employs spline-like Fourier-based approximations over the tra-
jectory. The idea is to first estimate the location of the in-
stantaneous jumps by using the single segment Fourier-based
approach, and then approximate each continuous part of the
trajectory by a unique Fourier-based representation. For in-
stance, from the results of Fig. 5(a), the time interval [0, 5] is
divided into [0, 1.3] and [1.3, 5.0], each of which is then
represented by a unique three-term Fourier-based approxi-
mation. Additionally, equality constraints are introduced to
ensure the continuity of the state variable response between
the two segments. The resulting control variable response is
plotted in Fig. 5(b).

The multiple segment Fourier-based solution of Fig. 5(b)
simulates the finite jump with greater accuracy than the single
segment solution of Fig. 5(a). The performance index of the
multiple segment solution is 5.832 which has a 3 percent error
compared to Leondes and Wu’s optimal value (and is less than
the single segment solutions listed in Table 3). Judging from
the value of the performance index, the quality of the Fourier-
based solution is most sensitive to the changes at the finite
jump and least sensitive to the deviation from the optimal
solution 4<¢<5. Since the performance index is a function
only of the state variables, this claim can be verified by ex-
amining the response of the state variables, shown in Fig. 5(c).
The state variable trajectories of the optimal and Fourier-based
solutions are in close agreement. Thus, despite the seemingly
poor prediction of the control variable for 4<t¢<5, the state
variable histories as well as the value of the performance index
are determined satisfactorily. In summary, by employing a
multiple segment Fourier-based approach, accurate near op-
timal solutions of bang-bang control problems can be obtained.

Due to its mathematical complexities, the methodology of
the multiple segment Fourier-based approach is not developed
in this paper. For applications of the multiple segment ap-
proach to unconstrained LQ problems, readers are referred to
(Yen, 1989; Yen and Nagurka, 1989).

Discussion

An advantage of a state parameterization approach, such
as the Fourier-based approach, is that it characterizes the op-
timal trajectory (which, in theory, consists of an infinite num-
ber of points) by a relatively small number of state parameters.
An optimal control problem can thus be converted into an
algebraic optimization problem (i.e., a MP problem). In gen-
eral, the corresponding computations are much less compli-
cated than those involved in standard optimal control solvers.

For unconstrained LQ problems, the performance index,
which initially is written as a quadratic functional, is converted
into a quadratic function. By differentiating this quadratic
function with respect to the free parameters, the necessary
condition of optimality is derived as a system of linear algebraic
equations which can readily be solved. As verified by simu-
lation results, this Fourier-based approach is computationally
more efficient than a standard LQ problem solver (based on
the transition matrix approach) in handling time-invariant LQ
problems.

For linearly constrained LQ problems, the system constraints
are relaxed to be satisfied only at a finite number of points
(usually equally-spaced) in time. Consequently, the linear sys-
tem constraints are replaced by a finite number of linear al-
gebraic inequalities. The optimal control problem is thus
converted into a QP problem.

In applying the Fourier-based approach, finite-term Fourier-
type series are employed. As a result, the Fourier-based ap-
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proach can be classified as a near-optimal (or suboptimal)
control approach. The accuracy of the Fourier-based approach
can be estimated empirically by increasing the number of terms
of the Fourier-type series. Additional terms can be added, on
a term by term basis, until the value of the performance index
converges, indicating that the optimal solution is closely ap-
proximated. For problems with bang-bang characteristics (e.g.,
Example 3), discontinuities of the optimal solution often cause
slow convergence of the Fourier-based solution. As suggested
in Example 3, this problem can be overcome by replacing the
‘“‘single’” segment approximation by a ‘‘multiple’’ segment ap-
proximation.

Work in progress is generalizing the Fourier-based approach
for solving general nonlinear optimal control problems (Yen,
1989). The underlying idea is similar to sequential quadratic
programming, a method which converts a nonlinear program-
ming problem into a sequence of QP problems. Similarly, a
nonlinear optimal control problem can be converted into a
sequence of linearly constrained LQ problems each of which
can be solved by an efficient and robust solver, such as the
proposed approach.

Conclusion

Based on the idea of state trajectory parameterization, this
paper develops a Fourier-based approach for solving uncon-
strained and linearly constrained LQ optimal control problems.
It is shown that LQ problems can be converted into QP prob-
lems. In particular, the necessary condition of optimality for
unconstrained LQ problems is obtained as a system of linear
algebraic equations.

Simulation results indicate that the Fourier-based approach
is computationally more efficient and numerically more robust
than the transition matrix approach in handling high order
unconstrained LQ problems. The results also show that, in
many cases, the Fourier-based approach provides sufficient
accuracy for many linearly constrained LQ problems. How-
ever, slow convergence has been observed in applying the Four-
ier-based approach to problems with discontinuous optimal
solutions. This difficulty has been overcome by generalizing
the approach from a single segment approximation to a mul-
tiple segment approximation. In summary, the Fourier-based
state parameterization approach promises to be an effective
and general computational tool for solving linearly constrained
LQ problems.
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APPENDIX A
Transition Matrix Approach for Unconstrained LQ Problems
Consider the LQ problem that minimizes

i T
L=3 DB+ | 6000
0

+uT(OR(u()dt (A-1)
subject to
x(0)=A0x()+B)u(®), x(0)=x, (A-2)

For simplicity, cross product and linear terms of the control
and state vectors have been omitted from the performance
index. The order of the system is assumed to be N.

In the transition matrix approach (see, for example, Speyer,
1986), the Hamiltonian is first introduced as

1
H=3 xQx +% u’Ru+ATAx + A"Bu (A-3)
where A can be viewed as a Lagrange multiplier vector whose
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elements are often called costate variables. It can be shown
that the necessary conditions of optimality are

i=3—-§l=Ax+Bu, x(0)=x, (A-9)

A= = —-Qx—A\, A(D=Hx(D (A-S)
_OH _ T
i =Ru+B"\ (A-6)

Equation (A-6) can be solved for the optimal control u giving
u=-R™'B\ (A-D

Substituting equation (A-7) into equation (A-4) yields
x=Ax-BR'B"\ (A-8)
Combining equations (A-5) and (A-8) gives a TPBVP that
consists of 2V linear homogeneous differential equations
x] [A -BR'B7)|x
A [-Q  -AT I] A
This system of equations is often called the Hamiltonian sys-
tem. Its solution has the following form
[X(fz) x(t)
A(%) A(n)

where ¢ is the transition matrix of the Hamiltonian system.
By setting ¢, =T and ¢, =0, equation (A-10) gives

»X(0)=x,, MD=Hx(1)  (A-9)

l= é(t2,1) (A-10)

X(D}]_[#1(T.0) 6:(T,0)) [x(0)
AD)j [62(T,0) 2(T,0)] (AO)

With the terminal condition A(T)=Hx(7) given by equation
(A-5), A(0) can be determined from equation (A-11) as

AM0)=K(Dx(0) (A-12)

(A-11)

where
K(7) = [622(T,0) ~ Ho\»(T,0)] " '[Ho,(T,0) - 621(T,0)]  (A13)

The Hamiltonian system of equation (A-9) can thus be viewed
as an initial value problem. Using equation (A-10), the solution
of this initial value problem can be formulated as

X(t,+AD) x(t5)
A, + Al A)

where P is the number of equally-spaced points for which the
solution is required and At = T/P. Note that for time-invariant
problems, the transition matrix ¢(#, + At, t,) is independent of
t, and is only a function of Ar. A solution approach based on
equation (A-14) is computationally much more efficient in
general than solving equation (A-11) using numerical integra-
tion-based differential equation solvers such as Runge-Kutta
methods. The corresponding optimal control u can be com-
puted from equation (A-7). Using this transition-matrix ap-
proach, it can also be shown that the corresponding
performance index value is

=¢(l,+ AL, 1) for p=1,...,P (A-14)

Lopima=3 X"OK(DXO) (A-15)
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