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A Fourier-based state parameterization approach for determining the
near optimal trajectories of linear time-invariant dynamic systems with
quadratic performance indices has been developed. The necessary
condition of optimality is derived as a system of linear algebraic equations
in terms of free boundary values and Fourier coefficients. In contrast to
earlier work in which the state trajectory was represented by a single
segment Fourier-type approximation, here the use of multiple segment
approximations is developed. Simulation results show that the single
segment Fourier-based approach is faster than standard transition-matrix
and Riccati-based approaches. The multiple segment Fourier-based
approach is numerically more robust than the transition-matrix approach
and computationally more efficient than Riccati-based approaches in
solving linear quadratic optimal control problems. Furthermore,
compared 1o the single segment Fourier-based approach, the muliiple
segment implementation improves the accuracy of the near optimal solution
for highly responsive dynamic systems.

Introduction

Linear quadratic (LQ) optimal control problems have been treated
extensively in the control literature.'* Typically, such problems are
converted to two-point boundary-value problems (TPBVPs) using the
calculus of variations. TPBVPs are then reformulated into initial value
problems using a transition matrix approach for open-loop solutions or
into terminal value problems using a Riccati-based approach for closed-
loop solutions.

In contrast to these variational methods, mathematical programming
technigues represent a distinct approach toward the solution of linear and
nonlinear optimal control problems. In general, these techniques conven
an optimal control problem into an algebraic optimization problem where a
near optimal (or suboptimal) solution can be obtained via algebraic
optimization. /'Work done in this area prior to 1970 is summarized by
Tabak®. A more recent survey is found in Kraft’. Theoretical aspects of
solving optimal control problems via mathematical programming are well
covered.®? .

Based on the idea of mathematical programming, Nagurka and Yen'®
developed a Fourier-based method for solving optimal control problems.
Unlike typical mathematical programming algorithms for optimal control
problems where control variables are characterized by their values at a
finite number of points, the Fourier-based approach approximates each
state variable by a Fourier-type series superimposed on a polynomial. The
actual number of free variables, which is dependent on the number of
terms of the Fourier-type series, is usually significantly reduced. Although
this single segment Fourier-based approach is computationally very
efficient and accurate for most optimal control problems, the near-optimal
solution has slow convergence for problems with rapidly changing
response characteristics, such as bang-bang control problems.

The Fourier-based approach was specialized by Yen and Nagurka'' to
unconstrained time-invariant LQ systems where the the condition of
optimality is formulated as a system of linear algebraic equations. To
improve convergence for problems with fast time response, this paper
generalizes the approach for LQ problems from a single segment Fourier-
type approximation to a multiple segment approximation. That is, the state
trajectory is divided into a number of time intervals each of which is
approximated by the sum of a polynomial and a Fourier-type series. The

results of simulation studies presented here demonstrate that most optimal
control problems (Examples 1 and 2) can be handled using a single segment
'Fourier-based approach. For problems (Example 3) with high speed of
response, the multiple segment approach is more effective.

Methodology

This paper considers linear, time-invariant systems described by the
state space model:

x(2) = Ax(?) + Bu(®)
with known initial condition x(0) = X, where x is an N x / state vector, u
is an J x I control vector, A is an N x N system matrix, and B isan N x J
control matrix. In the derivation that follows, it is assumed that J =N, i.e.,
the number of control variables is equal to the number of state variables.
(Example 2 addresses the case J < N.) Furthermore, it is assumed that the
control matrix B is invertible. As a result, every state variable can be
“actively” controlled.

(1

The design goal is to find the optimal control u(r) and the
corresponding state trajectory x(¢) in the total time interval [0, T') that
minimizes the quadratic performance index

LeLi+L, @
where .
T
Li=x"MHX(T) , L= f {(x"Qx + u"Ru} a 31

Matrices H and Q are real, symmetric, and positive-semidefinite and
matrix R is real, symmetric, and positive-definite. Superscript T denotes
transpose and T (italic) represents the terminal time. It is assumed the state
and control vectors are not bounded and the final time 7T is fixed.

The first step is to divide [0, T] into / intervals [t,, 4], [, &2), . . . {411,
4] where t,= 0 and 4=T. (Later in this paper it is shown that for many
problems /=1, i.e., a single segment approximation is appropriate.) In the
time interval [#;.,,4} (¢ = 1, 2,.., I) the n-th state variable x,(?) is
approximated by the sum of an auxiliary polynomial and a X term Fourier-
type series, i.e., fori=1,.,L,n=1,.,N

xp(r) = din() + ﬁ Qin COS (M) + i bing sin (M) 5)
k=l 8t k=l Ay
where
din(?) = dino + dim (1-15.1) + din2 (1-15_1)24- djn3 (I-IH)’ 6)
Al = 1 -ty (@)

If Xino» Xino» Xin7,» 800 X;sr are the values of the state variable x,and its
derivative at the boundaries of the time segment [#,.,.4], i.e.,
Xino = Xn(ti-1)  Kino = Xn(ti-1)  Xinr = Xn(6i)  Xiny = Xn(1)

(8a-d)

then the four coefficients of the auxiliary polynomial di,(f) can be written
as functions of the boundary values of the segment [fi;.%;] and the
coefficients of the Fourier series.

K
dino = Xino - Z dink

=1

. ¥
o Y. k bint (9a.9b)
k=1

. .
din2 = 3 | XinT - Xjno + 4% 2 k bink | (AL} = 2 (Xino + %in7 JAR)'  (90)
=1
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I
din3 = 2| XinT = Xino + 278 2 k bini | (A 1) + (Kino + Xin7} (Ari)2 9d)
k=1

Using Eq. (9), Eq. (6) can be presented in the form
K
Xn(t) = PitXino + Pnim + PisXinT + PM"‘inT + z (aikaink + piﬁbink) (10)
k=1

over the interval of [7,,.1;),where

pi=1-322+28  po=(u-24"+7)an (i1a)

p=37-27 pu={ 1+ ﬁS)Aﬂ' (11c,d)

o = cos (2knz)- 1 Pu=sin (2hnr)- 2har (1 -35427)  (11ep
with

T, = (1 - 4.)/AL 12)

The terms pP,..., Pigs Q> Bix are functions of time t. Eq. (10) can be
written in compact form as

X = pHO) Yin forti1S1S4 a3)
where
piW=lpy p2 ps pu @ - ox B - Bix ) a4
Yin =[ Xino RKino XinT XinT Ginl -- Gink il - - Gink ]T
= yim Yinz -+ Yim ' (15)

are vectors of dimension M = 4 + 2K. The first four elements of y, are
the values of x, and x, at the boundary of {t,,, #;]; the remaining elements
are the coefficients of the Fourier-type series. Vector y;, can be viewed as
a state parameter vector which characterizes the actual trajectory of x.
over the time interval {f;.), 4]. The design goal is to scarch for the optimal
parameter values such that the performance index is minimized. To
achieve this goal the state vector and its rate are first written as functions
of the state parameters.

The state vector x(#) can now be written as

x(0) = puOY; for L St<y (16)
where
T
Pi O, " 0 Yil i .o youf
0_ p,T . Yi2 [)’ill PN ynzu]r
L T R B : (17a,b)
.. 0 . .
0---0pf YiN, W1 - Yink]
By direct differentiation of Eq. (16), X(¢) can be written as:
i) = 6,()Y; for a<t<y (18)
where
G(1)=p0) (19)

The next step is to convert the performance index into a function of state
parameter vectors Y;. First, the terminal state vector can be represented
as:

x(7) = 8Y; (20)
where © is a transformation matrix with elements
[t m={(n-1)M+3 for n=1,..,N
O =10 otherwise @n
Substituting Eq. (20) into Eqg. (3) gives
L1 =Y/ (©@"HE)YS (22)

Similarly, the performance index L, can be written as a function of Y,.
First note that since it is assumed that B! exists, Eq. (1) can be rewritten
as:

v=B"x-B'Ax (23)
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Substituting Eq. (23) into the integrand of Eq. (4) gives:

xTQx + uRu = xTFyx + X Fzx + X Fax (24)
where

F,=Q+ (B"A)'R(B'A), F2= (B")'RB' (25a,5)

F3=-2(B")'RBA (@25¢)

are constant matrices that depend on system parameters and perfirmance
index weighting. By substituting Egs. (16) and (I8) into Eq. (24), the
integrand of the performance index can be expressed as a furction of
parameter vector Y; such that

xTQx + uTRu=YTAY; for tist<ty (26)

where

A;= PIFp+0 Fs6+0 F3p; = pip; ®F + oo e F2+ o,p] € F3 (27)
The elements of p; and o; are functions of time ¢ and time interval At; .
In Eq. (27), ® is a Kronecker product sign.

Using the results of Eq. (26), the performance index Lz can be
expressed as

4 7
Ly= i Y;-rA,'Y,'dt = 2 Y;r/.\iY,' (28)
iw] tiy im1
where
1
A = I A di (29)
i

Upon substituting Eq. (27) into Eq. (29), for time invariant problems,
F;,F2, and F3 can be removed from the integral, and the remaining
integra, parts of l‘\i , which are independent of system and pe formance
index parameters, can be evaluated analytically. These evaluations have
been summarized in integral tables for the products (and cross-products) of
the elements of p; and o;. The availability of such integral tatles makes
the approach numerically integration-free and thus computationally
efficient.

By substituting Eqs. (22) and (28) into Eq. (2), the performance index
can be written as a quadratic function:

1-1
L= Y YA Y+ Y]@™He+ A)Y,
i=)

(30)

In minimizing this converted performance index, there are two types of
constraints that must be satisfied. The first set of constraints refers to the
given initial conditions and can be expressed as:

forn=1,... N (€)))]

where X, is the initial value of the state variable x,. The second set of
constraints refers to the continuity requirements. That is, to ensure
continuity between segments, it is required that:

Yial = Xno

X(i-laT = King » X@-1)aT = Kino for i=1,..,1, n=1,...N (32)
These equations are equivalent to
YG-1n3 = Yinl » Y(-1wd = Yin2 for i=1,..,1, n=1,....N (33)

The optimization problem can now be formulaied as the seasch for Y,ny, !
=l,.,I,n=1,..,N,m=1, .., M, that minimizes the performr ance index
of Eq. (30) subject to the equality constraints of Eqs. (32) ard (33). In
particular, by substituting Eqs. (32)-(33) into Eq. (30), this problem can be
converted into a unconstrained optimization problem with 1 quadratic
function. Consequently, the necessary condition for optimality can be
established by equating to zero the derivatives of the converted
performance index with respect to the free variables. Detailed illustrations
of such a solution technique can be found in Boot!2,

Problems with fixed terminal states can be formulated exactly as Egs.
(30)-(33) with an additional set of equality constraints



for n=1,...N (34)

where x,r is the prespecified value of the state variables x, att= T.
Problems with linearly constrained terminal states can also be treated
similarly.

Yint = Xnr

Simulation Studi

For the simulation studies reported here, the Fourier-based approach
and a transition matrix approach or Riccati-based approach were applied to
generate the state and control variables at prespecified equally-spaced
points in time for LQ problems. To verify accuracy, the values of the
performance index from the standard approach and the Fourier-based
approach were compared. The time (in sec) required to execute the
program was recorded for each simulation and was used as an index of the
computational efficiency. The computer programs used in the simulations
were written in the "C" language and compiled by a Turbo C compiler
(Version 2.0). Efforts were made to optimize the speed of the computer
codes. The simulations were executed on a 16 MHz NEC 386 PowerMate
personal computer with a 16 MHz 80387 coprocessor.

Example 1: The goal of this example is to investigate the effectiveness of
the Fourier-based approach for solving high order LQ problems for
systems with invertible input matrices. Consider an N input N-th order
system

Xx=Ax +Bu, x"(0)=[1 2...N]

Table I: Summary of Simulation Results of Example 1

Transition-Matrix Approach | Fourier-Based Approach? Comparison

N |Performance Index | Time |Performance Index | Time |[%Time®] A%PI®

2 5.3591 0.22 5.3591 0.39 | 177.3 [<3.7x10°5
3 44.0044 0.44 44,0045 0.66 | 150.0 | <59x 10
4 44.2499 0.87 44.2504 1.05 ] 1207 [<1.1x103
5 164.3776 1.48 164.3884 1.59 [ 1074 [<6.6x 10
6 153.7563 236 153.7622 237 [1004 [<39x10°F
7 399.9883 3.40 400.1103 329 968 |<31x10
8 373.0219 5.16 373.0597 456 884 [<11x10Z
9 788.1612 7.15 788.8568 6.04 ] 845 [<89x107
10 741.6136 9.51 741.7737 785 [ 825 [<22x10°2
11 1366.9437 12.96 1369.5209 999 [ 77.1 [<19x107T
12 1299.3828 16.64 1299.8946 1258 | 75.6 [<3.6x10Z
13 2175.1952 20.81 21823431 1544 [ 742 [<33x10°!
14 2086.3916 2691 2087.7219 1873 | 69.6 |<6.4x102
15 3252.2758 32.62 3268.4011 2252 | 69.0 [<50x10°7
16 3142.8478 41.08 3145.8080 2697 | 657 |<9.5x102

AWith single segment two-term Fourier-type series

bPercent of execution time of Fourier-based approach relative to
execution time of transition-matrix approach

CPercent difference of performance index of Fourier-based approach
relative to performance index of transition-matrix approach

(35)
where The simulation results for N = 2, 3, ..., 16 are summarized in Table |
010----0 assuming a single-segment, two-term Fourier-based approach. The time
X1 I 010 . histories of the state and control variables of the case of N = 2 are plotted
] I . B=1l in Figs. 1a and 1b, respectively. The results demonstrate that a single-
x= U= e - P BE NN segment Fourier-based approximation is sufficiently accurate (always less
XN uN. 0- -0 1 L (36) than 1%) for all cases studied and is especially efficient in solving optimal
12 (PN control problems for high order systems.
The performance index is
$ Example 2: The goal of this example is to introduce an empirical
L= x"(1)Hx(1) + f (xTQx + uTRu)dt (37a) technique to apply the Fourier:based approach to general linear systems.
A Here, it is assumed that J < N, i.e., the number of control variables is less
H=10ly;n, Q=R=In;n (37b) than the order of the system. The control matrix B of Eq. (1) is assumed
to be of rank J.
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To apply the approach, the state equation is first modified as

x=Ax + B o G8)
where
. | Bsa . Toes :
; B =] Bay 39
Uz 0 :

with § = N - J. u is the original control vector and U is an artificial control
vector which does not physically exist. Since B is of rank J, without losing
generality, it can be assumed that the inverse of B* exists.

The performance index of the modified system is:

T
L' =L+rL where L= I (ETG) dt (40),(41)
o
and L is the performance index of the original system, L represents the
contribution of the artificial control variables, and r is a positive constant.

To obtain the near-optimal solution for the original problem, r is
chosen to be a very large positive constant. As a consequence, solving the
optimal solution for the modified system simultancously minimizes the
original performance index and the contribution of the artificial control
variables.

The problem specifications of this example are identical to those of
Example 1 except that the input matrix B is now specified as an N x ]
vector as

B"=[0...0 1) (42)
and the performance index is
1
L= J; oMx +ud)di @3)

This problem has been solved using both the transition matrix and a single
segment, two-term Fourier-based approach for N =2, 3, ..., 16. The
weighting constant r of the modified performance index was chosen to be
105, The simulation results, summarized in Table II, show that the
Fourier-based approach is again computationally more efficient in handling
high order systems. The time responses of the state and control variables
of the case N = 2 are plotted in Figs. 2a and 2b, respectively. These
figures show that the solutions from both approaches are hardly
distinguishable.
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Figure 2a. State Variable Histories for Example 2
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Table II: Summary of Simulation Results of Example 2

Transition-Matrix Approach | Fourier-Based Approach?® Comparison
N |Performance Index | Time |Performance Index | Time [%Time?| A%PIC
2 217.358 0.22 21.362 038 1728 [<15x102
3 195.033 0.44 195.171 0.66 | 150.0 {<6.6x10Z
4 705.569 0.87 706.255 1.04 | 1351 [<98x107
5 1720.550 1.43 1721.381 1.54 11077 [<49x107
6 3460.001 220 [ 3462970 2311 1050 [<8.6x10
7 €027.753 335 ) 6030.865 324 | 967 |<S52x102
3 9578.606 505 [ 9587.778 4451 881 [<9.6x107
9 | 14415.109 6.92 ] 14443.140 598 864 [<74x102
10| 20308134 9.23 | 20331.694 780 845 |<1.2x10T
11 | 28142.031 1274 | 28176.018 9.89 [ 776 {<1ix10T
12 | 36881.498 1620 | 36933.743 12411 76.6 |<1.5x10°7
13| 48453.432 2032 | 48537.693 1522 | 749 [<1.8x10°T
14 | 60525.689 2648 | 60628971 1845 ] 69.7 |<28x10°T
15 | 76593.643 3230 | 76772.657 2219 | 687 |<24x107
16 | 92466.982 4048 | 92653.710 2670 [ 660 [<21x101

CONTROL VARIABLE

2With single segment two-term Fourier-type series

Percent of execution time of Fourier-based approach relative to
execution time of transition-matrix approach
Percent difference of performance index of Fourier-based approach
relative to performance index of transition-matrix approach

Example 3: The previous examples have used a single segmen. Fourier-
based approximation and the results agree well with the transiti>n matrix
solutions. The objective of this example is to explore the use of the
mul;@'lc‘ ‘gegment Fourier-based approximation. This example considers
the N = § case of Example 1. However, the first diagonal term of the state
weighting matrix Q (i.e., g,,) is modified in this example.

Table 1II summarizes the results of the transition matrix, Riccati
equation and Fourier-based approaches (with a two-term Fourier-type
series) for g, = 1,10, ..., 10", As shown in the table, the transition matrix
approach encounters a numerical problem for the case q,, = 10°. This
problem is caused by the difficulties in numerically evaluating the
transition matrix.'* Table II also shows that the accuracy of the Fourier-

Transition Matrix-Based i

TIME

Figure 2b. Control Variable Histories for Example 2
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12433 171.816 1.59

24.33 195.558 1.59

Unsiable 259.241 24.33 377.168 1.59
—— ———

4With single segment two-term ‘Fourier-type series

‘based approach decreases & ¢;, iricreases. Among the three methods, only
‘the Riccati equation‘solveris robust when subject to-heavy state weightings.
However, the associated eomputational cost is very high.

Fig. 3a shows the time response of x; from the Riccati-based and
Fourier-based:solifions. As shown in the figure, the state variable x;. has a
very fast traniSient!#ésponse: . A response. with such a nearly instantaneous
shift contains--non negligiblé -high frequency components. As a
consequence, ‘it is difficylt for a_Fourier-type series to achieve a
satisfactory approximation with only & few terms. To demonstrate the
improvement in accuracy with more terms, Table IV summarizes the

“sintilation results of the Fourier-based appmaeh with two, four, six, eight
“#hd"ieh term series.

Next, a two segment, two-term Fourier-based approximation is applied.
Simulation results are summarized in Table V. The results show that by
approximating the transient and steady-state responses of state variable x;
with distinct time segments, the Fourier-based approach is hi %
The accuracy, however, is influenced by the selection of 1,, th&"time
dividing the two segments. Note that the solution from the single scgment
Fourier-based approximation (such as shown in Fig. 3a) gives g good
indication of where the transient and steady-state response are divided.
The time response of x; plotted in Fig. 3b.

1.0
One Segment Fourier-Based Approach
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Figure 3a. State Variable Histories for Example 3

STATE VARIABLE X,

Table IV: Summary of Simulation Results of
Example 3 Showngf{ecx of Different
Pouner-Type Series

2o

K | Performance Index .
2 377168 n
4 304.402

6 279.993 8.46

8 269.731 15.66

10 264.899 26.09

Table V: Summary of Simulation
Results of Example 3 with Two Seginent’
Two-Term Fourier-Type Series -

y Performance Index®
0.05 259.264

0.1 259.478°
0.2 262.709

0.3 270.426

SExecution time is 5.88 sec.

In general, the multiple segment Fourier-based approximation is
required only when the time constant of the response is significantly less
than the time interval over which the performance index is defined.

1.0
Two Segment Fourier-Based Approach
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Figure 3b. State Variable His.tories for Example 3
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