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SUMMARY

This paper presents a general computational tool for determining the near-optimal trajectories of linear,
lumped parameter, dynamic systems subjected to linear constraints. In the proposed approach each state
variable is approximated by the sum of a third-order polynomial and a finite term Fourier-type series.
This enables a linearly constrained optimal control problem to be converted into a linearly constrained
mathematical programming problem. Simulation results demonstrate that the approach accurately
predicts the optimal performance index and the optimal state and control trajectories.
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INTRODUCTION

Methods for the solution of optimal control problems are treated in depth in many
textbooks.!™* Typically, the necessary condition of optimality for a constrained optimal
control problem is formulated as a two-point boundary-value problem (TPBVP) using
Pontryagin’s minimum principle. However, the solution of this TPBVP is usually difficult, and
in some cases not practical, to obtain. In general, variational methods such as Pontryagin’s
minimum principle are not effective for solving constrained optimal control problems.

In contrast to variational methods, trajectory parametrization approaches offer an
alternative solution strategy. In general, these techniques convert an optimal control problem
into a mathematical programming (MP) problem that can be solved for a near-optimal
solution via various optimization algorithms. The application of MP methods for solving
optimal control problems has been studied by many researchers.®~

The majority of previous trajectory parametrization methods involve control
parametrization. In these approaches each control variable is represented by the sum of a
sequence of known functions with unknown coefficients serving as control parameters. By
representing state variables as functions of control variables, and hence functions of control
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parameters, an optimal control problem can be converted into a MP problem. Numerical
integration of the state equations is often required in order to determine the functional
relationship between the state and control variables. As a result, converting state-related
constraints of an optimal control problem into algebraic inequalities involving a finite number
of control parameters is usually a complex process. For the same reason, control
parametrization approaches are often intensive computationally and sensitive to numerical
€rrors.

An alternative to control parametrization is to parametrize both the state and control
variables, as suggested recently.’® In combined state and control parametrization an
approximation of the system dynamics is generally required to guarantee compatibility between
the state and control parameters, i.e. to ensure that the representation of the state and control
vectors satisfies the state equations. In addition, the increased number of trajectory parameters
tends to increase the computational cost.

State parametrization methods have also been suggested. For example, a Fourier-based state
parametrization method!® has been used to convert a general optimal control problem into a
non-linear programming (NP) problem. In this approach each state variable is approximated
by a Fourier-type series superimposed on a polynomial. This method was also specialized '® to
handle unconstrained LQ problems. In contrast to control parametrization in which the state
equations are used as differential equations, state parametrization treats the state equations as
algebraic equations in determining the functional relationship between the state and control
vectors. Since numerical integration of the state equations is avoided, state parametrization
is usually more efficient than control parametrization. Another advantage of state
parametrization is that it can directly handle problems with fixed final states.

This paper promotes a specialized version of the Fourier-based state parametrization
approach!® that converts a linearly constrained optimal control problem into a linearly
constrained MP problem. By drawing on the power of well-developed optimization algorithms
for linearly constrained MP problems, the proposed approach promises to be an accurate and
numerically robust computational tool for determining optimal control trajectories of linearly
constrained linear systems.

PROBLEM STATEMENT
Consider a linear dynamic system described by the state space model
x()=A@)x({) +B()u(?) 1)

with known initial condition x(0) = xo, where x is an N'X 1 state vector, u is a Jx 1 control
vector, A is an N X N system matrix and B is an N X J control influence matrix. In the
derivation that follows, it is assumed that J= N and B is invertible, implying that every state
variable can be ‘actively’ controlled. (The case J < N is addressed later.)

The design goal is to find the trajectories of control u(¢) and corresponding state x(¢) in time
interval [0, 7] that minimize the quadratic performance index

L=L+L, (2)
where

Li=h(x(T), T) )

T
L= jo g(x(1), u(t), 1) dt @)
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without violating the linear system constraints

Ei (0)x(#) + E2(f)u(?) < e(?) &)

FOURIER-BASED PARAMETRIZATION APPROACH

Fourier-based state parametrization serves as the basis for converting the above time-
continuous problem into a finite-dimensional optimization problem. The proposed
parametrization can be used to convert the performance index of equation (2) into a function
of time-independent state parameters. Additionally, it can be used to replace the system of
constraints of equation (5) by a system of linear algebraic inequalities involving only the state
parameters.

The basic idea of Fourier-based state parametrization is to divide each state variable
trajectory into [ intervals, each of which is represented by the sum of a third-order polynomial
and a k-term Fourier series. The superposition of the polynomial on the Fourier series
increases the speed of convergence and assures differentiability over each interval.!® As shown
in the Appendix, this state parametrization can be cast in the compact form

x())=Ci(t)yi forti-i<t<t, i=1,..,1 (6)

where C; is a matrix of known time-dependent functions (given in the Appendix) and y; is a
time-dependent state parameter vector that characterizes the response of x(¢) over the ith
interval (f;i—-1 < < 4):

Yi1 i . yuml"
yi= y:iz _ | iz yiam] " )
y:‘N [yinve .. . yinu] "
where
Yin = [Xin0 Xino XinT XinT @in1 ... @Qink bint ... bink]"

8)
= [Yint Yinz oo Yinm] ©

consists of the boundary values of x, and X, (the first four elements of equations (8)) and the
coefficients of the Fourier-type series (the last 2K elements of equation (8)). Similarly, the state
rate vector can be expressed as ’

X(O)=Di@)y; fortio1<t<ty, i=1,...,1 )
where
Di(t) = C:(¢) (10)
Assuming that B~! exists, equation (1) can be rewritten as
u(t) =B~ (k1) - B (DA ()X() an
Substituting equations (6) and (9) into equation (11) gives
u(®)= B OD:(t) -B 'OAWC:(t)y: fortio, <t<t;, i=1,...,1 (12)

Thus the state, state rate and control can be represented as known functions of the state
parameters.
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It is now possible to recast the performance index as & function of vectors y;, i=1,..., I
The first part of the performance index, L;, can be written as a function of y; (the state
parameter vector of the last segment) by noting that

x(T)= 0Oy 13)
where O is a transformation matrix with elements

0. — 1, m=(n-1)M+3 forn=1,...,.N
"™~ 10, otherwise

(14)

Substituting equation (13) into equation (3) gives
Li=h(y, T) (15)

Similarly, the second part of the performance index, L;, can be rewritten by substituting
equations (6) and (12) into the integrand of equation (4) to give

I ti
L=%{ gvana (16)
i=1 ti-1
From equations (15) and (16) the performance index of equation (2) expressed as a function

of the state parameter vector is
¢

I
L=hyn T)+ § (i 1) dt 17

= ti-1
The next step is to replace the system constraints of equation (5) by a system of linear
algebraic constraints of the state parameters. Substituting equations (6) and (12) into equation
(5) gives

Gi(yi<et) fortioi<tt, i=1,..,1 (18)

where
Gi(t) = (E1(1) - B2 (OB~ (HA(1))Ci(¢) + E2(1)B'Di(?) (19)

Since the constraints of equation (18) are functions of continuous time, they represent an
infinite number of constraints that must be satisfied along the trajectory. In order to convert
these constraints into a finite number of algebraic inequalities, the constraints are relaxed to
be satisfied only at a finite number of points (usually chosen to be equally spaced) in time.
Consequently, equation (18) is replaced by

Gy <@ fori=1,...,1 (20)

where

Gi(ti-1)
Gi(ti—1 + 61;)
: @n

9)
Il

Gilti—y + (mi— 1) 5t;)
Gi(t)

F ei(ti-1)
ei(ti-1+ o)
: (22)

9)
Il

eilti_1 + (mi — 1) 8t;)
ei(ti)
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with
oti= At;/m; (23)

where m; is the number of sampling points for the jith segment.
In minimizing the converted performance index, two types of constraints must be satisfied.
The first set of constraints guarantees that the given initial conditions are met:

Yim=Xn forn=1,...,.N 24

where x,o is the initial value for the state variable x,. The second set of constraints ensures
continuity between segments:

X(i-pnr= Xino fori=2,...,1, n=1,...,N (25)

X(i—ynT= Xino fori=2,...,I, n=1,...,.N (26)
By definition from equation (8), these equations are equivalent to

Yi-pn3=Yim fori=2,..,I, n=1,..,N 27

Yi-pna=Yina fori=2,..,1I, n=1,..,N (28)

The optimization problem can now be viewed as the search for yimm, i=1,...,I, n=1,..., N,
m=1, ..., M, that minimizes the performance index of equation (17) subject to the equality
and inequality constraints of equations (20), (24), (27) and (28).

FOURIER-BASED APPROACH FOR GENERAL LINEAR SYSTEMS

The approach presented above is applicable to systems with square and invertible control
influence matrices, often called ‘actively’ controlled systems. This section generalizes the
Fourier-based approach to the more common case of linear systems which have fewer control
variables than state variables. The system has the linear structure described by equation (1)
with B being an N x J matrix, where N > J. It is assumed that the rank of B is J.

To apply the Fourier-based approach, the state space model of equation (1) is first modified
to

(1) = A@)x(?) + B*(Hu* (1) 29
where
B* (1) =Blx~n= [I‘”"’X‘N"’ Bm] (30)
OyxN-n)
u (1) = ufx; = [“‘”"’* l] (31
Wx1

and the subscripts represent the dimensions of the matrices. By introducing an artificial control
vector 1, the new control influence matrix B* can be inverted, enabling the calculation of the
control u* for any given trajectory. It can be guaranteed that B* is invertible if the last J rows
of B are non-singular. However, if these rows are singular, since B has rank J, the first N— J
columns of B* can always be adjusted to ensure that it is invertible.
In order to predict the optimal solution, the performance index is modified to
T

L*=L+r s aT()a() dr (32)
0
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where L is the performance index of the original optimal control problem (with control u*)
and r is a weighting constant chosen to be a large positive number. The integral term associated
with r represents the contribution of the artificial control vector.

By using artificial control variables, a non-actively controlled system can be converted into
an actively controlled system to which the Fourier-based state parametrization approach can
be applied. The resulting solution will not, in a strict mathematical sense, satisfy the trajectory
admissibility requirement owing to the existence of artificial control variables. ' However, by
employing the penalty function approach of equation (32), the magnitude and influence of the
artificial control variables can be made small and the solution of the modified optimal control
problem can approximate closely the solution of the original optimal control problem.

SIMULATION STUDIES

In this section the solutions of optimal control problems obtained by the Fourier-based
approach are compared with known closed-form solutions. Example 1 investigates a minimum
fuel problem with bounded control. Example 2 examines a bang—-bang control problem with
a quadratic performance index and bounded control. In these examples the modified Newton
method developed by Gill and Murray, !"*!® considered to be one of the most efficient solution
approaches for linearly constrained MP problems, is used to determine the optimal values of
the unknown state parameters. Efforts were made to optimize the speed of the computer codes,
all of which were written in ‘C’. The simulations were executed on a SUN 3/60 workstation.

Example 1
This minimum fuel problem is adapted from Owen'® (pp. 251-255). The system is described

| -6 302- 6 o

x1(0)] _ 10 x(M] _[1
[xz (0)] B [O]’ [xz(l)] - [0] (34a,b)

It is required to find the solution that minimizes the performance index

with boundary conditions

1
L= S lu(e) | de (35)
o
with a constraint imposed on the control
lu@)|<p (36)
The closed-form optimal solution, derived by Owen,'® is
p, 0<t<ty
ut)y=] 0, t<t<t 37
-D, hL<ig 1

with the switching times
h=301-J1~-4/p)N, =3[1+](1-4/p)] (38a,b)
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A solution of the specified minimum fuel problem exists if and only if p > 4. (Otherwise the
switching times are complex.) In this example we choose p=35.

Owing to the absolute sign in the performance index integrand, the linearly constrained MP
problem resulting. from application of Fourier-based state parametrization is non-
differentiable. Optimization algorithms for linearly constrained MP problems typically assume
differentiability of the objective function. To overcome this difficulty, an empirical technique
is introduced in which the performance index of equation (35) is replaced by

1
L= § (gu)u) dt (39)
(1]

gu)= i[sin (Lu) + sin (ﬁr}ﬁ) + sin (5—1”1) + ] (40)
w n 7 7

In this example the number of terms of g(u) is chosen to be 20 and » = 10.

The optimal control history (i.e. equation (37)) and the solutions obtained using three-, five-
and nine-term Fourier-type series are plotted in Figure 1. The corresponding performance
index values are summarized in Table I. As shown in both Figure 1 and Table I, the Fourier-

where

)
N

CONTROL VARIABLE

3 Term Fourier-Type Series

4F 6 Term Fourier-Type Series
"""" 9 Term Fouricr-Type Serics
Optimal Solution
~ 6 re 1 A H 1 e 1

0.0 0.2 04 0.6 0.8 1.0
TIME ’

Figure 1. Control variable histories for Example 1

Table I. Summary of
simulation results of Example
1 using single-segment K-term
Fourier-type series (optimal
solution is 2-7639)

K Performance index

3 2-8872
6 2-8211
9 2-7838
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based solutions converge to the optimal solution as the number of terms of the Fourier-type
series increases. Since the Fourier-based approach assumes continuity throughout the
trajectory, significant mismatches are observed in the control variable histories at the switching
times. Despite the discrepancies, the Fourier-based approach provides solutions which
approximate closely the optimal performance index.

Compared to traditional methods for minimum fuel problems, the Fourier-based approach
does not require any specialized analytical or computational effort to determine the switching
times. Furthermore, the Fourier-based solution is continuous throughout the trajectory and
hence avoids the bang—off—bang characteristic of the optimal solution which is generally not
physically implementable.

Example 2

This example, adapted from Leondes and Wu, % considers the linear quadratic (LQ) system

described by
x| _[0 1i[x 0 x1(0)| _|0-167
5 e | S O ot e @

with performance index

5
L=1 S (x1+ x3) dt (42)
0

As in Example 1, a constraint is imposed on the control. Here
lu@)]| <0-8 (43)
The optimal solution, as computed by Leondes and Wu, 2° has a bang—bang nature, i.e.

-0'8 0<t<1-325
(t)={

44
0-8, 1:325<1<50 “44)

The corresponding value of the performance index is 5-607.

The control histories using the Fourier-based approach with three-, six- and nine-term
Fourier-type series are plotted in Figure 2. Values of the performance index as a function of
the number of terms are tabulated in Table II. From Table II and Figure 2 it is seen that the
state-parametrized solutions begin to converge to the optimal bang-bang solution as the
number of terms of the Fourier-type series increases. However, the speed of convergence is
quite slow, since the Fourier-based approach assumes continuity throughout the trajectory and
the optimal solution exhibits an instantaneous switch at ¢ = 1-325. Consequently, significant
discrepancies between the optimal and Fourier-based solutions can be observed in the
neighbourhood of the finite jump.

One remedy for this slow convergence is the application of a multiple-segment Fourier-based
approach. The idea is to estimate the locations of the instantaneous jumps by using the single-
segment Fourier-based approach and then to represent each continuous part of the trajectory
by a unique Fourier-based representation. In this example, based on the results of Figure 2,
the time interval [0, 5] is divided into two intervals, [0, 1-3] and [1-3,5-0]. Then a three-term
Fourier-based representation is employed for each interval. The resulting performance index
value is 6-161, which has a 9-9 true percentage relative error and is better than all the single-
segment solutions listed in Table II except the one for nine terms. The corresponding control
history is plotted in Figure 3. Since the Fourier-based solution has no discontinuity, it is more
likely to be physically implementable.
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Figure 2. Control variable histories for Example 2 using single-segment Fourier-based approach

Table II. Summary of
simulation results of Example
2 using single-segment X-term
Fourier-type series (optimal
solution is 5-607)

K "~ Performance index
3 8-357
4 7-832
5 6-909
6 6-548
7 6-467
8 6-238
9 6-092
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Figure 3. Control variable histories for Example 2 using double-segment three-term Fourier-based approach (with
continuity requirement on state rate)
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Figure 4. Control variable histories for Example 2 using double-segment three-term Fourier-based approach (without
continuity requirement on state rate)

The Fourier-based solution can be improved further by removing the continuity requirement
on the state variable rate. By not imposing the equality constraint of equation (28) (or,
equivalently, equation (26)), the control variables of the Fourier-based solution can be
discontinuous at the point between segments, here r=1-3. As a result the Fourier-based
solution can more closely simulate the bang—bang characteristic of the optimal solution. By
relaxing the equality constraint on the state rate and using the double-segment three-term
Fourier-based approach, the performance index value becomes 5709, which is only 2% larger
than the optimal value. The control response of the double-segment solution is plotted in
Figure 4. Judging from the value of the performance index, the quality of system performance
is very sensitive to the changes at the finite jump and not very sensitive to the deviation from
the optimal solution for 4 <7 < 5.

DISCUSSION

This paper presents a Fourier-based state parametrization approach for solving linearly
constrained optimal control problems. State parametrization approaches using eigenfunctions
other than Fourier-type series, such as Chebyshev polynomials, are possible and have been
reported?! for unconstrained problems. In employing an alternative representation and
converting a linearly constrained optimal control problem to an MP problem, it is essential
that (i) convergence be guaranteed on the state and state rate vectors and (ii) continuity on the
state and control vectors be achieved. The Fourier-based approach was selected since it readily
satisfies these requirements and has well-known properties.

The Fourier-based approach, like other trajectory parametrization approaches, characterizes
the system response by a relatively small number of parameters and casts the original time-
continuous optimal control problem as an MP problem. In the proposed approach the state
equations are treated as algebraic equations in establishing the functional relationship between
the state and control variables (see equation (11)). In control parametrization the state
equations are manipulated as differential equations and numerical integration is often required
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in order to represent state variables as functions of control variables. These differences are
often summarized by viewing state parametrization as being an ‘inverse dynamics’ approach,
whereas control parametrization is based on ‘direct dynamics’. As a consequence, as long as
problems with trajectory inadmissibility are avoided (where constraints on the control structure
prevent an arbitrary representation of the state trajectory from being achieved), state
parametrization approaches are generally more robust and efficient than control
parametrization approaches. To ensure trajectory admissibility in the proposed approach,
artificial control variables are suggested. Although they can increase the computational cost,
especially if the statefcontrol variable ratio is high, they enable the control to be represented
by the state parameters and guarantee general applicability of the method.

Because finite term Fourier-type series are employed, the Fourier-based approach is a near-
optimal (or suboptimal) method. The accuracy can be estimated empirically by increasing the
number of terms on a term-by-term basis until the performance index converges to a desired
accuracy. For problems with continuous optimal solutions a single segment Fourier-based
representation is usually sufficient. For problems with discontinuous optimal solutions (such
as Examples 1 and 2) a multiple-segment approximation may help to achieve an accurate near-
optimal solution. The Fourier-based approach has the flexibility of maintaining continuity of
the near-optimal solution. This may avoid problems with physical implementation often
encountered in applying the bang—bang control laws suggested by standard optimal control
solution approaches. Another advantage of the Fourier-based approach is that it can easily
handle problems with fixed initial and terminal states and state rates, since these boundary
values are part of the state parameters.

CONCLUSIONS

Drawing on the idea of state trajectory parametrization, this paper develops a Fourier-based
approach for solving linearly constrained optimal control problems with linear dynamics.
These optimal control problems are converted to linearly constrained MP problems that are
tackled using well-developed optimization algorithms. The results of simulation studies
demonstrate that the Fourier-based approach is capable of providing accurate and continuous
near-optimal solutions even when the optimal solution is not continuous. The approach
promises to be an effective and general computational tool for solving linearly constrained
optimal control problems.
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APPENDIX

This appendix provides the analytical foundation of the multiple-segment Fourier-based state
parametrization approach. The first step is to divide [0,7] into I intervals [to, #1],
(ti, 0], ..., lti-1, 1], where to =0 and ¢;= T. In time interval [t;-,,8]) (i=1,2,..., I) the nth
state variable x,.(f) is approximated by the sum of a third-order polynomial pi.(¢) and a
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K-term Fourier-type series, i.e. fori=1,...,7and n=1,..., N,

5= i)+ 3 aecos(EEEL) 4 3 gy n(HECt))

where
Pin(t) = Pino + Pim (t = ti-1) + Pinz (t = ti=1)* + Pin3(t ~ ti-1)? (46)
Ati=1t;i—ti— 47

Compared to a standard Fourier series expansion, this representation assures high speed of
convergence and differentiability. 1’

The coefficients of pin(¢) can be written as functions of the coefficients of the Fourier series
and the values of the state variable x, and its derivative at the boundaries of the time segment
[ti-1, ti], 1.e. Xino, Xinos XinT and Xx;,r, where

Xino = Xn(ti-1), Xino = Xn(ti-1), Xint = Xn(t:), XinT= Xn(t;) (48a—d)

where fp=0and #,=T.

K K
Dino = Xino — 2, Qinks Dint = Xino — 2 2 kbink (49a,b)
k=1 Ati k21
K 3 .
Din2 =3 (xinr— Xino + 4T D, kbink) At7? = 2(Fino + Xinr) ALT! (49¢)
k=1
K -
Din3 = 2<xinr- Xino + 2T D, kbiuk) A7 + (Xino + Xin) AL72 (49d)
k=1
Substituting these expressions into equation (45) and rearranging gives
K
Xn(t) = pi1 Xino + PizXino + PisXinT + PiaXinT + kZ (ctikQink + Bikbink) (50)
=1
where
pir=1-37%+2712, piz=(ri =217 + 1) Ati (51a,b)
pis =31} =212, pis=(~12+712) Al; (51c,d)
ai = cosQkrri) — 1, Bix = sinQRkw1:) — 2kwri(1 — 37: 4+ 2T,'2) (51e,f)
with
1= (f— ti-1)[ Al (52)
Equation (50) can be written in compact form as
Xn(t)=¢F(t)yin fortioi <t<t (53)
where
el ()= [pu piz pis pia air ... aik Bi1 -.. Bix] (54)
Yin = [Xino )"inO XinT XinT Qin1 ... Qink bin1 ... bink] T
= [Yin1 Yin2 ... Yinm] T (55)

are vectors of length M =4+ 2K. The first four elements of yi, are the values of x, and X,
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the boundary of [ti-, t;]; the last 2K elements are the coeflicients of the Fourier-type series.
The state vector x(¢) can now be written as

x(@)=Ci(t)y; forti-  <t<t (56)
where the state parameter vector y; has length N(4 + 2K) and
M oF
0
Ci= e 7
5 .
! of
yit | i1 e Yiml"
yie y:iz _| yiaml " (58)
y;'N_ [yim yinml "
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