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This paper develops a methodology for trajectory planning of
robotic manipulators. The trajectory planning problem, cast as an
unconstrained nonlinear optimal control problem, is converted
into a sequence of linear quadratic (LQ) optimal control problems
via quasi-linearization. Each of the LQ problems is solved via
Fourier-based state parameterization. In contrast to variational
methods and dynamic programming, the approach is
computationally efficient and guarantees a near optimal solution
that satisfies terminal conditions.

INTRODUCTION

In addition to variational methods and dynamic programming,
mathematical programming techniques (including linear,
quadratic, and nonlinear programming) offer important means for
solving optimal control problems. For example, linear program-
ming has been applied to solve linear optimal control problems
involving minimum time [1,2], minimum fuel {3,4], and both [5-
7). Similarly, quadratic programming has been used to solve lin-
ear optimal control problems [4,8-10]. General nonlinear optimal
control problems have been solved by nonlinear programming
techniques {11-12].

Typically, the above methods convert an optimal control prob-
lem into an algebraic optimization problem by assuming that the
control variables are piecewise continuous. The number of free
variables of the resulting optimization problem is usually high,
limiting the effectiveness and efficiency of computational algo-
rithms. This is particularly true for systems of high-order and/or
with large terminal times.

Efforts have been made to reduce the dimensionality of the
converted optimization problem. For example, Yen and Nagurka
[13] represented the state variables by the sum of a polynomial
and a Fourier-type series, and showed important computational
advantages when solving linear quadratic (LQ) problems. Yen
and Nagurka [14] also developed computationally efficient
algorithms in which the control variables of linear systems were
represented by series of orthogonal functions. For nonlinear op-
timal control problems, Yen and Nagurka [15] employed a
Fourier-based approximation of the state variables. The state and
control variables have also been expanded in Chebyshev series
[16]. Compared to other parameterization approaches, these
methods tend to involve fewer free variables in the algebraic op-
timization problem. However, the speed of convergence is often
quite slow for nonlinear problems. Consequently, except in the
special case of LQ problems, these mathematical-programming-
based methods are computationally intensive for solving optimal
control problems.
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Due to these difficulties (and the inability of variational meth-
ods and dynamic programming to solve high order nonlinear op-
timal control problems), the optimal control of general robotic
manipulators has remained a research challenge. Some special-
ized problems have been addressed. For example, minimum-time
trajectory problems, which have bang-bang control solutions,
have been studied extensively [17-24). Robotic manipulator
problems involving general performance indices have been
investigated using dynamic programming [25-27]. These
approaches circumvent the dimensionality problem by restricting
the degrees-of-freedom of the trajectories, thus limiting the quality
of the "claimed” optimal solution.

Mathematical programming methods have also been applied to
robotic manipulator systems. In these approaches the joint
displacements are represented by sets of functions whose optimal
coefficient values are determined. In Schmitt, et al [28], these
coefficients are computed from the necessary conditions of opti-
mality which are a system of nonlinear algebraic equations. In
Nagurka and Yen [29], the coefficients are obtained via nonlinear
programming. Both approaches are robust in terms of numerical
stability, but require substantial computation.

This paper applies a quasi-linearization approach [30] to de-
termine the optimal control of robotic manipulators. The ap-
proach employs a second-order approximation of the performance
index and converts the nonlinear optimal control problem into a
sequence of time-varying LQ problems with fixed terminal states.
Fourier-based state parameterization is applied to solve each of
these LQ problems. Simulation results indicate that the approach
is accurate and computationally efficient.

OPTIMAL CONTROL OF ROBOTIC MANIPULATORS

The optimal control problem in this paper is defined as the
trajectory planning of an n degree-of-freedom manipulator from a
given initial condition to a target terminal condition in time T such
that a prespecified performance index is minimized. Math-
ematically, this problem can be stated as the minimization of the
performance index

L= f FO).B()u().0) di (1)

subject to the equation of motion
H(0)8 + g(6,8)=u(r) , 6(0) =8, &(0) =48,

and terminal conditions
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where 8 is an n x 1 vector of joint displacements, Qisannx 1
vector of joint velocities, u is an n x 1 vector of control variables
and T (italics) represents terminal time. A state vector X is defined
as

) =[ 80 ]
a(n)

For sufficiently small variations 8x and 8u from a nominal
trajectory, the performance index can be expanded to second order
terms as

()]

T

L(x+8x,u+8u) = L(x,u) + f [£x8% + fydu
+ %(Ex’ﬁ‘,&x + 8u'fuudu) + 8x fyydu ] dr (&)
where x satisfies requirements on the boundaries, i.e.,
x(0) =[ 8(0) } X = { 9(”} ©.7
6(0) (T

In Eq. (5) superscript T denotes transpose. The equation of
motion, i.e., Eq. (2), can be expanded to first order about the
nominal trajectory giving
H.50 + a_g 86+(§6—H+a—g]50=8u
9% 98/

) ®

Subscript 4 signifies that the terms are evaluated on the nominal
trajectory.

The approximate performance index given in Eq. (5) can be
minimized by solving the following the LQ problem: Minimize

T

SL(8x,5u) = f [f;5x+f:8u+%(8x7j;,8x+8u7f....5u)+5x1f,.,5u] da )
subject to

M6 + C56 + K80 =5u , 88(0) = 36(0) = 0 (10)
and fixed values of state variations at the terminal time

50(T) = 86(T) = 0 an
where

M=H, c=(% ,K=(§9L* 3_&) !

d (bé),, 30 + %), (12)-(14)

The following section develops an efficient procedure for
solving this LQ problem. Once solved, the joint coordinate vari-
ables are updated according to the following rules:

0+506,0+80 6, 6+30 86 (15)-(17)
The control vector is updated using

H(0+56){ 6+36 1+ g(6+56,6+56) > u (18)
(instead of using

u+du—-u (19)

adopted in [30]). These update laws guarantee the satisfaction of
the boundary conditions as well as the functional relationship be-
tween the state and control vectors defined by the equation of mo-
tion. The iterative process is repeated until convergence. In
summary, the quasi-linearization approach converts a nonlinear
optimal control problem into a sequence of LQ problems.
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STATE PARAMETERIZATION FOR LO PROBLEMS

Eqs. (9)-(11) define a time-varying LQ problem with fixed
terminal states. Since this problem must be solved in every iter-
ation of the quasi-linearization, a robust and efficient solution ap-
proach is essential. Due to the fixed terminal value of the state
vector, a solution procedure of the LQ problem based upon the
Riccati equation is not applicable. An approach based on calculus
of variations is possible [31]. However, such an approach
requires the integration of several additional differential equations
and suffers from numerical instability problems caused by infinite
gains at the terminal time.

In order to provide an efficient algorithm, Bashein and Enns
[30] developed a control parameterization approach that converts
an LQ problem into a quadratic programming problem. In this
approach, the trajectory is characterized by values of the control
variables at a finite number of time intervals. The differential
constraints imposed by the state equations are then converted into
a system of algebraic equality constraints where a state transition
matrix is used to determine the linear dependencies between state
and control variables. A similar discrete approximation for
continuous-time state equations is available [32].

In this study, a version of the state parameterization approach
[13] modified to account for problems with fixed terminal states
is adopted. Compared to control parameterization [30], this ap-
proach reduces the dimensionality of the unknown variables. The
basic idea of state parameterization is to represent each general-
ized coordinate (in this case, the variations of the joint displace-
ments) by a set of known functions ¢;with unknown weighting
coefficients e; (i.e., state parameters) such that

J
804 =Y, ey o)

=1

(20)

subject to boundary conditions, such as Eqs. (10) and (11). Since
relationships among the coefficients can be established from the
boundary conditions, the number of unknown variables can be re-
duced.

In particular, in Fourier-based state parameterization each joint
coordinate variation is represented by the sum of a fifth-order
polynomial and a Fourier-type series:

86 = Di(t) + Fi(o) 20
s
D=y, djt/ (22)
j=0
J . .
Fo=Y (a; cosz%m- + by xin?"?m ) (23)

i=1
This approach characterizes the joint coordinate variations by
boundary values and their first and second derivatives (i.e., 56;,
56;, and 86; at both boundaries) and the coefficients of the Fourier-
type series. That is, the following equations can be formulated:

86,(0) = 86,0 = D{0) + Fi(0), 66(T) = 867 = DLT) + F{T) (24),(25)
560) = 800 = Di(0) + F{0), 864T) = 807 = DAT) + FAT)  (26),(27)
86,(0) = 86,0= Di0) + Fi(0), 88(T) = 88 = DA + FAD)  (28),(29)

from which the coefficients of the polynomials can be determined
as functions of boundary values and Fourier-type coefficients [15).

Using this idea of state parameterization, a joint coordinate
variation vector can be written as:




86 =py+p 30)
where

86 =86, 68, --- 56,1 31

y=[yi yi - yal' (32)

p=[p1 p2--- pal’ 33)
with

yi=[ 860 867 an--- ay by byT (34)

pi = i (6610 ,88i0 667 667, 1) @35)

In the above equations y; is a state parameter vector of §6; and
consists of unknown boundary values and coefficients of Fourier-
type series of the i-th joint coordinate. p is a vector of time and
known boundary values of the joint coordinates. p represents a
matrix whose elements are known functions of time. Detailed
derivations are can be found in [13].

Direct differentiation of Eq. (30) gives

80 =o0y+q, 80=¢y+r (36),(37)
where
6=p, q=p, 0=p, T=Pp (38)

To apply this state parameterization approach to solve the LQ
problem defined by Egs. (9)-(11), Egs. (30), (37), and (38) are
first substituted into the linearized equation of motion, Egs. (10).
A control variation vector can thus be written as a function of y
and time. This control variation vector and equations (30), (37),
and (38) can be substituted into the performance index, Eq. (9).
Hence, the performance index can be written as a function of y

SL=yAy+yT +Z (39)
where the capital A, T, and £ are functions of time and known

boundary values. The necessary condition for minimum perfor-
mance index is given by

4@l g (40)
dy

which is equivalent to
(a+4T)y=-r 41

Eq. (48) represents a system of linear algebraic equations that can
be solved for the optimal values of the state parameter vector.

This Fourier-based state parameterization approach [13] con-
verts the original optimal control problem into an algebraic opti-
mization problem, which is typically of lower order than that ob-
tained via control parameterization. Satisfactory near optimal
results can often be obtained with only a few term Fourier-type
series.

MULATI
Example 1

This example considers the minimum energy trajectory of a
one-link manipulator: The problem is to find the trajectory that
minimizes the performance index

L=f u®dt 42)

subject to

B+ sin 6= u(r) 6(0)= 6o, 6(0)= & (43)

with final states specified as:
6(1)=1rad , €&1)=0rad/s (44)

where Eq. (43) is the equation of motion of the manipulator with g
as the gravitational constant (9.805 m/s?).

Computer programs were written in the "C" language and
compiled by the Microsoft Quick C compiler (Version 1.0). The
programs were executed on a 16 MHz NEC 386 PowerMate
computer with a 16 MHz co-processor.

A three-term Fourier-type series was used for the state
parameterization. The initial nominal trajectory was assumed to
be a fifth order polynomial that satisfies the boundary conditions:
joint displacements and velocities (given at both ends) and joint
accelerations (assumed zero at both ends.) The value of the per-
formance index, plotted in Figure 1, converged after seven itera-
tions, although the minimum is closely approximated after only
one iteration. The total execution time was 2.6 s.

To verify the results, this problem was solved using a numeri-
cal method based upon calculus of variations. A two-point
boundary-value problem was formulated using the necessary con-
ditions of optimality, and then a steepest-descent method [33] was
implemented. In order to apply the steepest-descent algorithm,
the problem was converted to a free terminal state problem with a
modified performance index:

L =20000{6(1) -1 f + 2006’(1)+f ulde 45)

°

where the weightings on the terminal states were determined by
trial and error to ensure a terminal state error of less than 1073 rad.
In implementing the steepest-descent method the two-point
boundary-value problem was integrated by a fourth-order Runge-
Kutta routine with a time step of 0.01 s. The computer program
terminated execution once the difference between two subsequent
values of the performance index was less than 10¢ N2 The initial
guess was identical to the one used in the quasi-linearization
approach. Under such circumstances, a solution was obtained af-
ter 4725 iterations. The execution time was 2060 s, almost three
orders of magnitude longer than the proposed approach.

22 4
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Figure 1. Value of Performance Index
as a Function of Iteration for Example 1.
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Figure 2. Joint Displacement History for Example 1.

The joint displacements of both approaches are plotted in Fig-
ure 2. The time histories of the control variables are given in
Figure 3. In both figures, the solutions of the two approaches are
indistinguishable. The approach of quasi-linearization, with state
parameterization for solving the LQ problem, offers significant
savings in computational cost with comparable accuracy.

Example 2

This example considers a minimum energy problem of a two-
link planar manipulator where the integrand of the performance
index is specified as the sum of the joint torques squared. A
schematic diagram of the manipulator is given in Figure 4. The
boundary conditions were chosen to be

9,(0) = 0 rad, 6,(0)= 0 rad/s (46)
0,(0) = 1 rad, 6,(0)= 0 rad/s “én

M;=M,=1.0kg I,=I,=0.lkg-m’
D;=D,=10m d;=d;=0.5m

Figure 4. Schematic Diagram of Manipulator for Example 2.
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Figure 3. Joint Torque History for Example 1
8,(1) = -2.6223 rad, 6,(1)=-5.8314 rad/s (48)
0,(1) = -0.0134 rad, 5(1)=10.284 rad/s (49)

where the terminal boundary conditions were selected in such a
way that the optimal solution is torque free motion. Using a
three-term Fourier-type series, the history of the performance in-
dex during the optimization process is given in Figure 5. The
near optimal solution is closely approximated in five iterations.
Rapid convergence is again observed. The corresponding value of
the performance index is 3.425 N2-m2. The near optimal and
“true” optimal joint displacements are plotted in Figures 6. The
control vector is plotted in Figure 7.

In Figure 7, the oscillatory behavior of the control variable
solutions is due to the existence of the Fourier-type series used in
the state parameterization. The accuracy can be improved by in-
creasing the number of terms of the Fourier-type series. For ex-
ample, the performance index is reduced to 1.492 N2-m? when
using a five term Fourier-type series.
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Figure 5. Value of Performance Index
as a Function of Iteration for Example 2.



7| soint 2 Dispiacement

Joint 1 Displacement

Joint Displacement (rad)

Fourier-Based Solution
Optimal Solution

T T T T T
02 0.3 o4 05 0.6

Time (sec)

07 08 09 1

Figure 6. Joint Displacement Histories for Example 2.

SUMMARY

In this paper, a numerical algorithm has been developed to
solve the problem of optimal control of robotic manipulators. A
quasi-linearization method is used to convert a nonlinear optimal
control problem into a sequence of LQ problems which are solved
by an efficient state parameterization approach. The update laws
for the nominal trajectory ensure satisfaction of the terminal
conditions.

In contrast to dynamic-programming-based methods, the pro-
posed approach does not demand extensive computer storage re-
quirements and thus is capable of achieving optimality without
limiting the degrees-of-freedom of the trajectory. Compared to
nonlinear-programming-based methods, the approach offers sig-
nificant advantages in computational efficiency. Compared to
calculus-of-variations-based methods, the approach eliminates the
requirement of solving a two-point boundary-value problem and
therefore is more robust and efficient. Work is currently underway
to extend this method to problems with constrained state and
control variables and to high order robotic manipulator problems.
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