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INTRODUCTION

The problem of controlling a robotic manipulator can be
conveniently divided into two closely related subproblems:
(i) trajectory planning (also called motion planning), and
(i) trajectory tracking (also called motion control). For
instance, a possible strategy for controlling 2 manipulator
consists of off-line trajectory planning followed by on-line
trajectory tracking; the latter usually involves the imple-
mentation of closed-loop feedback. Here, trajectory refers
to the time history of position, velocity, and acceleration
for each degree of freedom of a manipulator model. This
research focuses on a suboptimal trajectory planning algo-
rithm for unconstrained as well as constrained motion.

Schemes for trajectory planning generally ‘‘interpolate™
or “‘approximate”’ the desired path by a class of polynomi-
al functions. These schemes then generate a sequence of
time-based control set points for the control of the manipu-
lator from the initial location to its destination. Quite
often, there exists a number of possible trajectories be-
tween the two given endpoints. (In theory, there exists an

infinite number of possible trajectories.) For instance, the
manipulator can be moved along a straight-line path that
connects the endpoints (straight-line trajectory), or the
manipulator can be moved along a smooth, polynomial
trajectory that satisfies the position and orientation con-
straints at both endpoints (joint-interpolated trajectory).
The research reported here exploits this potential of multi-
ple possible solutions by developing an off-line optimal
motion planning algorithm that generates trajectories that
minimize a given performance index without violating any
constraints. This trajectory generation algorithm can be
formulated as an optimal contro! problem.

In solving optimal control problems, variational meth-
ods are applied to derive the mecessary conditions for
optimality which can be formulated as two-point boundary-
value problems (2PBVPs). Numerical algorithms have
been deveioped to solve some 2PBVPs that are analytically
intractable.!2 Although thesc algorithms have been ap-
plied to solve some optimal control problems, they are
inadequate in tackling problems such as the optimal
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contro! of robotic manipulators, which typically have large

numbers of degrees of freedom and strong nonlinearities.

In fact, many nonlinear optimal control problems are still

computationally infeasible to solve.

In view of these numerical difficulties, various approaches
have been suggested for the optimal motion programming
of robotic manipulators. For example, by linearizing the
manipulator dynamics at the final target point, Kahn and
Roth(¥ derived a near-minimum-time control law for open
kinematic chains. Vukobratovic and Kircanski® used a
dynamic programming based method 1o calculate the
optimal velocity profile for a prespecified manipulator
path. By neglecting the influence of Coriolis and centrifu-
gal forces, Vukobratovic and Kircanskit® also applied
optimal control theory to solve for the optimal motion of
**simplified’’ robotic models. Kim and Shin® presented a
suboptimal control approach for manipulators with a
weighted minimum time-fuel criterion based on the con-
cept of averaging the dynamics at each sampling interval.
Although these approaches have been tested via computer
simulations, their success is limited. Each approach is
either confined to a problem with a particular type of
performance index or it depends upon a simplified dynam-
ic model which may not be valid in many cases.

Townsend et al.(» and Schmitt et al.® presented con-
ceptually similar, but alternative, approaches for solving
optimal motion problems for manipulators. In both
approaches each joint angular displacement is approximat-
ed by a function. In (7) this function consists of a sum of a
polynomial and a half-range cosine series; in (8) it consists
of a sum of a cubic polynomial and a sequence of known
functions with unknown weighting coefficients. The
optimization problem then involves finding the parameters
of the approximating functions that minimize a perform-
ance index.

In practice, these approaches are suboptimal. Only finite
terms of the expansion functions {(i.e., the half-range
cosine series in (7) and the sequence of known functions
in (8)) are included, whereas, in theory, the optimal
solution requires infinite terms. Nevertheless, these
approaches appear useful in solving several types of
optimal motion problems. However, in applying these
methods a number of unanswered issues are raised.
1. Convergence. Can we guarantee that the suboptimal

trajectory converges to the true optimal solution, or if

this is not possible, that the suboptimal performance
index, at least, converges to the true optimal perform-
ance index?

2. Polynomial function. Can we specify the (minimum)
degree and coefficients of the polynomial function such
that convergence is guaranteed?

3. Boundary Conditions. Can various types of boundary
conditions, such as free, fixed, and coupled terminal
conditions, be treated?

4. Criterion of Optimality. Can we identify a criterion of
optimality that can be used to ensure the quality of the
suboptimal solution?
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5. Applicability. What, if any, limitations exist in apply-
ing such suboptimal approaches? For instance, can such
approaches be used realistically to solve bang-bang
type control problems?

In response to the above questions, this research devel-
ops a general purpose Fourier-based suboptimal control
algorithm to generate manipulator trajectories. This algo-
rithm approximates the time history of each generalized
coordinate by the sum of a fifth order polynomial and a
finite term Fourier-type series. Instead of finding the
continuous time history of the control variables, the
proposed method reduces the optimal control problem to
one of searching for the optimal parameters of the approxi-
mating functions. Due to the nature of the conversion, the
computational scheme of this method is based on an
inverse dynamic approach and therefore avoids most of the
numerical difficulties encountered in optimal control prob-
lems. By using standard nonlinear programming tech-
nigues, the determination of the optimal motion for high
order, nonlinear robotic manipulator models is hence
feasible.

Unlike previous schemes, this method does not require
model simplification and can be applied to a large class of
optimal control problems. Problems with variable terminal
time as well as problems with free or constrained terminal
states can be handled easily. In addition, a guideline that
can be used to confirm the quality of the suboptimal
trajectory is suggested.

This paper is organized as follows. In the following
section, ‘‘Manipulator Dynamics.”" the relationship among
the manipulator dynamics, trajectory planning and control
system design is discussed. In ‘‘Planning Manipulator
Trajectonies,”” the methodology and function of various
types of trajectory planning algorithms are considered.
‘‘Manipulator Optimal Control’’ is concermned with the
formulation and numencal difficulties of optimal control
problems for dynamic systems such as robotic manipula-
tors. ‘‘Fourier-Based Suboptimal Control Algorithm.™* the
Fourier suboptimal control approach is developed and in
“‘Discussion of Suboptimal Approach,”” some important
characteristics of the approach are discussed. Computer
simulation results that demonstrate the application and
effectiveness of the proposed algorithm are presented in
‘‘Examples.”” Conclusions are given in ‘‘Conclusion.”

MANIPULATOR DYNAMICS

The dynamic equations of motion of a ngid-body
manipulator model are a coupled set of nonlinear ordinary
differential equations describing the dynamic behavior of
the manipulator. These equations can be derived by a°
variety of approaches, such as the Lagrange-Euler, Newton-
Euler, and generalized D’ Alembert formulations. For an n
degree-of-freedom manipulator configured as an open ki-
nematic chain the equations can be expressed in the form

TO=MB1)6 )+ V(8 (1).8 (1) +G(O ) (1)

where 6 is an n x | vector of generalized coordinates



associated with the n degrees-of-freedom of the manipula-
tor, T is an n x | vector of generalized forces applied at the
joints, M(6) is an n x n inertial-mass matrix V(0.6)isannx|
vector representing centrifugal and Coriolis effects, G(6) is
an n x | gravity loading torque vector, t is time and
superscript dot represents time derivative. In general, each
element of M and G is a complicated function which
depends on (1), while each element of V depends on both
61 and &1).

Given the equations of motion of a manipulator model,
two types of dynamic problems can be solved. In the direct
dynamic problem, the generalized force history is specified
and the equations of motion can be integrated to obtain the
motion trajectories of the manipulator. In the inverse
dynamic problem, the desired generalized coordinates and
their rates are assumed known a priori, e.g., from a
trajectory planning program, and the equations of motion
are used to compute the generalized force history.

Numerically, the inverse dynamic approach is much
more straightforward than the direct dynamic approach. In
the direct dynamic approach. integration of the differential
equations of motion is required, while in the inverse
dynamic approach the same set of equations is used as a
system of algebraic equations. This distinction is important
from the perspective of computational efficiency and has
implications when considering the accumulated numerical
error. Both truncation and roundoff errors significantly
influence the convergence of standard optimal control
algorithms. Consequently. computational algorithms which
are based on a direct dynamic approach generally have
serious convergence problems in searching for optimal
solutions of high order, nonlinear systems.

Another important aspect that closely relates to manipu-
lator dynamics is the design of the feedback controller. As
indicated above, the dynamic equations that describe the
manipulator motion are coupled. highly nonlinear, ordi-
nary differential equations. The control system design is
complicated by the coupling and nonlinearity (which is due
physically to gravitational torques, reaction torques, and
Coriolis and centrifugal torques.) As a result, these effects
are often carefully studied in the process of control system
design. For instance, the relative magnitude of the effec-
tive inertia at each of the joints and the inertial coupling
between joints have practical importance. If the coupling
inertias are small with respect to the effective joint
inertias, the manipulator can be treated as independent
mechanical systems and the complexity of the control law
can be greatly reduced. Another example is a manipulator
not moving at high speed, for which the velocity depend-
ent terms are typically neglected, thereby making the
implementation of various real-time control laws possible.
The simplifications mentioned in these examples are often
adopted but limit the operating domain of the manipulator
controller.

The interaction between various terms of the dynamic
equations is determined not only by the physical character-
istics of the manipulator and the load it carries but also by

the trajectory. It appears reasonable to search for trajecto-
ries that give rise to minimal nonlinear effects and/or
minimal dynamic coupling between joint motions so that
simplified control striegies such as linear control theory
and/or decoupled feedback control schemes can be ap-
plied. One of the objectives of this research is to explore
this approach of selecting special trajectories that can
simplify the control system design problem. This concept
of marrying the stages of control strategy and trajectory
planning in order to increase the effectiveness of the
control law is demonstrated by an example in **Examples.™

PLANNING MANIPULATOR TRAJECTORIES

Typically. in manipulator programming the trajectory
planner is viewed as a black box. The inputs to the
trajectory planner are usually the path specifications.
where the path is defined as the space curve that the
manipulator end-effector moves along from the initial to
final location (position and orientation). In addition, the
planner can accept constraint information such as obstacle
constraints (whether there are any obstacles present in the
path) and dynamic constraints (whether there are any
limitations on the generalized forces). The outputs of the
trajectory planner are the trajectory and the generalized
force history. :

There are two common approaches for planning manipu-
lator trajectories. One approach requires the user to
explicitly specify a set of constraints at selected locations.
called interpolation points, along the trajectory. The trajec-
tory planner then selects a parameterized trajectory from a
class of functions that ‘‘interpolates™ and satisfies the
constraints at the interpolation points. A second approach
requires explicit specification of the path that the manipu-
lator must traverse by an analytical function, such as a
straight-line path in Cartesian coordinates. The trajectory
planner then generates a trajectory to approximate the
desired path.

In the above two trajectory generation approaches it is
desirable to provide simple trajectories that are smooth.
accurate, and efficient (in terms of computational require-
ments and in terms of manipulator performance such as
energy consumption.) A fast computation time for generat-
ing the sequence of control set points along the desired
trajectory of the manipulator is preferred especially for
cases of on-line implementation. Because current trajecto-
ry planners usually do not account for (i) the interaction
between the trajectory and controller, and (ii) the dynamic
constraints, large tracking errors may result. Another
drawback of current trajectory planners is that they lack an
objective index to evaluate the trajectory performance.

Recently, the design of trajectory planners has shifted
away from a real-time planning objective to an off-line
planning phase in order to generate trajectories that can
accommodate more constraints and achieve better system
performance. For example, Lee® proposed an off-line
approach in which a trajectory planning problem was
formulated as a maximization of the straight-line distance
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between two consecutive Cartesian set points subject to
smoothness and torque constraints.

In essence, this new trend decomposes the control of
robotic manipulators into off-line trajectory planning
followed by on-line tracking control. Running off-line, a
sophisticated trajectory planner should be able to (i)
generate a trajectory that satisfies path specifications and
various types of constraints, and (ii) achieve a trajectory
with superior performance which can be evaluated by an
objective function (i.e., performance index). These goals
led to the development of the trajectory planning algorithm
presented in this paper.

MANIPULATOR OPTIMAL CONTROL

In practice, optimal control approaches have not been
implemented widely for programming trajectories of ma-
nipulators due to the nonlinear nature and high
dimensionality of such systems. As mentioned in the
introduction, the necessary conditions for optimality (based
on standard optimal control theory) lead to a two-point
boundary-value problem (2PBVP).

Various numerical techniques have been proposed to
solve the 2PBVP. In general, these techniques fall into two
categories: gradient-based methods and dynamic program-
ming methods. The utility of the gradient-based methods is
limited due to their dependence on gradient-type informa-
tion which is quite sensitive to numerical errors. The
applicability of the dynamic programming methods is
hindered by dimensionality problems (i.e., the number of
computations as well as storage requirements typically
grow much faster than the order of the system.)

In addition to optimal control methods, nonlinear pro-
gramming methods represent an important class of
optimization techniques. The main difference between
solving an optimal control problem and a nonlinear pro-
gramming problem is the dependence on time (a continu-
ous variable). In an optimal control problem one seeks the
time history of an optimal trajectory, which in theory
consists of an infinite number of points. In a nonlinear
programming problem, one searches for a finite number of
free variables to optimize a given objective function,
where the objective function and constraints are time-
independent. In order to bridge the difference between the
nonlinear programming and the optimal control methods,
two different approaches have been proposed, namely, the
Rayleigh-Ritz technique and the method of finite differ-
ence. The basic idea of these two methods is to convert the
optimal control problem with infinite dimensionality to a
problem of finite dimensionality which can be solved by
nonlinear programming methods.

The method of finite difference discretizes the time
history of the generalized coordinate into a finite number
of piece-wise continuous intervals. The problem is thus
changed into a problem of finding the extrema of the
objective function with the values of the piece-wise contin-
uous generalized coordinate as free variables. This tech-
nique is generally impractical when the degrees-of-freedom
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or the time interval of interest becomes large since the
number of variables increases significantly under such
circumstances.

the basis of the Rayleigh-Ritz method is to replace each
generalized coordinate by a set of weighted known func-
tions. The unknown weighting coefficients are determined
such that the performance index of the orginal problem
can be minimized. The K term approximation can be
expressed as

K
8V = % cun(®) @

Here the generalized coordinate variable, 6, consists of a
sum of the product of known approximating function, uy,
and weighting constant, cy. If the desired trajectory is
specified on one or both of the boundaries, the approxi-
mating functions should be constructed in such a way that
the given conditions will be satisfied for all values of the
weighting constants. If the boundary conditions are natural
(i.e., free) boundary conditions, no such special precaution
is required. Usually, the number of constants required
depends on the complexity of the optimization problem and
the shrewdness in selecting the approximating functions.
Best results are usually obtained when using approximat-
ing functions drawn from a functionally complete set of
eigenfunctions in the interval of interest.

Two drawbacks of the Rayleigh-Ritz method can be
identified. First, it is difficult to determine a set of
approximating functions that simultaneously satisfies the
boundary conditions on both the generalized coordinates
and their time derivatives. Second, even if the approximat-
ing functions converge to the optimal solution, there is no
guarantee that the respective derivatives will converge.
The approach presented in the following section general-
izes the Rayleigh-Ritz method and corrects for these
problems.

FOURIER-BASED SUBOPTIMAL
CONTROL ALGORITHM

Given the dynamic equations of motion of an n degree-
of-freedom manipulator model, equation (1), the optimal
control problem is to find an admissible control, Toy, that
causes the manipulator to follow an admissible trajectory,
Oopt and Bom, such that the performance index,

. Y -
7)) = (&), 6.1, + [ g(O)v), 61),T(1),ndt (3)
L3

is minimized. In equation (3), f and g are general functions
of the arguments shown and it is assumed that the initial
conditions, &) and 6(tg), and the initial time, to, are
specified. The final time, t7, and the teminal states, 6(tf)
and &(tp). can either be free or fixed.

The problem can be further generalized by adding two
types of constraints. The first class of constraints, state
variable inequality constraints, can be written as

E(6(1).6(t),0=0 (4)

where E is an m x 1 (m<n) vector function of the states and
possibly time. In the trajectory planning problem, these



constraints usually represent obstacle (avoidance) con-
straints that exist in the working environment. The second
class of constraints, actuator-related inequality constraints,
can be expressed as

[Tilsw,  i=l..n 5)

where 7; is the maximum allowable torque at the i-th joint.
These constraints reflect the fact that each joint actuator is
power limited and subject to saturation.

The central concept of the proposed suboptimal algo-
rithm is to convert the optimal control proplem into a
nonlinear programming problem by approximating each of
the joint angular displacements by the sum of a fifth order
polynomial and 2 finite Fourier-type series. For example,
for joint i,

6i(1) =Py(t)+ Fui(t), ©)
where the auxiliary polynomial, Pi(t), is defined as
Pi(l)zPi0+Pi|(+pi2t2+p13l3+p54t4+pi5t5 (@)

and the K term Fourier-type is defined as

2 k(i) Koo 2km(t-t)

(tf-!o)+ lga.ksm ) ®)
The velocity and acceleration of the i-th joint are obtained
by direct differentiation of the above equations. Control
variables can be calculated readily from the equations of
motion. The performance index can also be computed by
straightforward numerical integration methods such as
Simpson’s composite integral technique.

Assuming both the initial conditions and terminal condi-
tions of the state variables (joint displacements and veloci-
ties) are given, the coefficients of the fifth order auxiliary
polynomial are computed to satisfy the following algebraic
equations:

K
Fii()="% aixcos

8i(t))=Pi(to) + Fii(to) (&)
8i(te)=Pi(t) + Fis(tp 10)
6(t0)=Pi(t0) +Fii(to) an
8i(t0)=Pi(t) + Fus(tp) (12)
8i(to)=Pi(t0) + Fui(to) (13)
0i(t)=Pity) + Fui(t) (14)

Here the initial accelerations, éi(!o), and final accelera-
tions, 6i(ty), of the joint variables as well as the coeffi-
cients of the Fourier series are the variables left to be
determined. The search for the optimal trajectory, which in
theory consists of an infinite number of points, is thus
converted to a nonlinear programming problem with a
finite number of free variables. These variables are the
Fourier-type coefficients (aix, bix) and the free boundary
conditions of the trajectory.

The necessity of the fifth order auxiliary polynomial can
be justified by the definition of the Fourier series and its
property of differentiability. The following theorem can be
found in standard engineering mathematics textbooks such
as (10).

Theorem of Dirichler: If X(1) is a bounded periodic
function, X(t) = X(t + 2a), which in any one period has at
most a finite number of local maxima and minima and a
finite number of points of discontinuity, then the Fourier
series of X(t) converges to X(t) at all points where X(1) is
continuous and converges to the average of right-and
left-hand limits of X(t) at each point where X(1) is
discontinuous.

The conditions of the Theorem of Dirichlet, which are
usually referred to as the Dirichlet conditions, make it
clear that a function need not be continuous in order to
possess a valid Fourier expansion. The implication is that
it is reasonable to expect that every optimal trajectory can
be approximated by a Fourier series since such a trajectory
satisfies the Dirichlet conditions.

It is next necessary to show that the suboptimal solution
converges to the true optimal solution. To do this, the
following property is first introduced.

Property of Differentiability: The necessary and suffi-
cient conditions for X(1) = F(1) in the interval [3.8+2a]
where F(t) is X(1)’s Fourier series and X(t) is continuous
are (i) X(t) is continuous, (ii) X(t) is piece-wise differen-
tiable in (3,8+2a), (iii) X(8) = X(8+2a), and (iv) X(8) =
X(3+2a). This property can be generalized to the second
derivative case.

According to this property, we can conclude that as long
as the above four conditions are true, the result of term by
term differentiation of the Fourier series of period 2a
representing X(t) in the interval of [3.5+2a] converges to
X(t) at each point in [3,5+2a] at which X(t) is continuous.
A proof can be found in (11).

From this property, we find that equations (9) through
(14) guarantee the feasibility of direct differentiation of the
Fourier series from displacement to velocity and from
velocity to acceleration as long as they are all continuous.
The convergence of the suboptimal trajectory (including
displacement, velocity and acceleration) to the true optimal
solution is thus guaranteed.

DISCUSSION OF SUBOPTIMAL APPROACH

This section discusses some of the detailed characteris-
tics, including the restrictions and strengths, of the pro-
posed approach.

Local minimum. The method guarantees only that a
local minimum solution is achieved. The suboptimal solu-
tion may not be unique. Identification of the global
optimal solution may require trial-and-error selection of
the initial guess.

Numerical algorithm. The original optimal control
problem has been converted to a problem of ordinary
extrema which can be solved by a number of well-
developed nonlinear programming techniques.(1215) For
example, the simplex method(!® is adopted in this research.

Accuracy. A closed form expression of the joint varia-
bles is available and, thus, the joint torques can be
computed directly from the equations of motion by straight-
forward algebra. The accuracy of these calculations is
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limited only by the least significant digit of the computer.
As a result, the accuracy of this approach is dominated by
the numerical error of the integration algorithm used to
evaluate the performance index. Because the errors of
numerical integration can be estimated and controlled, the
problem of convergence which is encountered frequently
in implementing standard optimal control approaches is
avoided.

Terminal states and time. The terminal states and
terminal time can be treated as free variables. During the
search for the optimal solution, they—together with other
variables, such as the coefficients of the Fourier series—
are adjusted simultaneously in every iteration to minimize
the performance index.

Restrictions. One of the necessary conditions for the
convergence of the proposed approach is the continuity of
displacement, velocity and acceleration of the true optimal
trajectory. This requirement is violated in bang-bang con-
trol problems due to the finite jump(s) of the control
variables. Hence, the suboptimal trajectory will only con-
verge to the average of the neighboring points at the point
of switch. However, since bang-bang control has finite
switch points, the value of the suboptimal performance
index will still converge to the value of the performance
index of the true optimal solution.

Although in theory the proposed approach is capable of
achieving true optimal performance, simulation results
show that the speed of convergence of the suboptimal
bang-bang control solution is usually very slow. This
property is similar to the *‘Gibbs’ phenomenon’’ (110}, pp.

S

2
M =M_=1kg I =1 =0.1kg-m

0 =0_=1m d‘=dz=0.5m

Figure 1. Two link planar manipulator model
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247-249) which occurs when developing the Fourier series
for a square wave function. As a consequence, when high
accuracy is desired (say an error in the performance index
of less than 5%), the number of Fourier-type expansion
functions increases dramatically such that the approach
may become computationally impractical. In spite of this
drawback, the proposed approach can always provide a
smooth trajectory except in cases where there is an
instantaneous shift of the control input (a situation which is
physically impossible).

Criterion for optimality. A possible means of verifying
the quality of the suboptimal control law is to check if it
satisfies the necessary conditions for optimality which are
derived by variational methods. In practice, this verifica-
tion can be carried out by substituting the suboptimal
solution into an appropriate standard optima control nu-
merical algorithm and determining if the termination criter-
jon of the selected algorithm is satisfied.

An alternative empirical approach is to append another
term of the series to the previous solution and repeat the
optimization process. Additional terms can be added, on a
term by term basis, until the change in the performance
index is sufficiently small. (For unconstrained problems,
simulation results show that a two or three term Fourier-
type expansion yields satisfactory results.) It should be
noted that although it is a good idea to use the previous
solution as part of the initial guesses of the current
optimization process, one cannot fix the preceding terms
of the Fourier type series and only treat the newly
appended terms as free variables. This is because a Fourier
series with finite terms is only optimal in the sense of
mean square error. That is, the coefficients determined by
the Fourier formulas are the optimal coefficients only in
terms of the mean square error between the original
function and the finite term Fourier series. The proposed
algorithm minimizes the algebraic difference between the
true and suboptimal performance indices which is
mathematically different from finding a suboptimal trajec-
tory to minimize the mean square error to the true optimal
trajectory.

EXAMPLES

Example 1. The dynamic system of interest is the two
degree-of-freedom (i.e., planar) robotic manipulator shown
in Figure 1. If acceleration due to gravity acts in a
direction perpendicular to the x-y plane, the equations of
motion are:

T|=Hué|+H]zéz—Héz7~—2Hé|éz (15)
T2=H|261+H362+H912 (16)
where

Hi i =Md;2+1, +M3[D;2+d;2+2Didicos6:] +h
Hy=Mad22+12

H12=M>:D;d>cos82+Mad22+1>
H =M2D|dgsin02
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Figure 2. Joint displacement histories for example 1

The path specification is to move the manipulator from
iitial position [6,(0),62(0)]=[0°, 30°] to final position
[61(1).62(1)]={120°, 60°] in 1 second with the initial and
final velocity zero.

A simple trajectory planning method is to introduce a
cubic polynomial for each joint angular displacement. A
cubic polynomial has four coefficients, which can be
found from the boundary requirements on initial and final
displacement and velocity.

Altematively, a performance index representing certain
performance characteristics of the manipulator can be
proposed. The optimal trajectory can then be obtained by
applying the suboptimal method presented in this paper. In
this example, the performance index is the control effort,
represented by

2
2T
k=1

In the suboptimal approach, each angular displacement
is approximated by the sum of a fifth order polynomial and
a two term Fourier-type series. The Simplex method(® is
used to search for the optimal values of the coefficients of
the series and the initial and final accelerations for both
Joints (with the cubic polynomial trajectory used as the
initial guess.)

The time histories of the angular displacements and the
performance index (using a cubic polynomial trajectory
and the suboptimal trajectory) are shown in Figures 2 and
3, respectively. Figure 2 shows that the cubic polynomial
trajectory connects the two end points by smooth interpola-
tion, whereas the suboptimal solution involves displace-
ments of the joints that deviate outside the boundaries.
Although the suboptimal trajectory appears excessive and
inefficient, the perfomance index remains small during the
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Figure 3. Control effort history for example 1

motion. This contrasts with the cubic polynomial trajectory
for which the performance index is especially large near
the boundaries. Integration of the curves of Figure 3 show
that as a result of the optimization the value of the
performance index decreases from 387.5 to 122.9 N2-m2-
sec, indicating a significant reduction in manipulator con-
trol effort.

Example 2. The previous example represents a typical,
standard optimal control problem since it concentrates only
on the performance of the open loop system. However,
with an appropriately selected performance index and a
simplified dynamic model, a scheme to improve the closed
loop system performance can be proposed. The flowchart
of this scheme is given in Figure 4.

The actual (on-line) generalized forces, T, are calculated
according to a prespecified simplified model. The perform-
ance index is chosen to represent the difference between
the planned trajectory, 6, and the actual trajectory (i.e.,
system response), 6*. The influence of the dynamic terms,
which were neglected in the simplified model, can thus be
minimized when the manipulator moves along the optimal
trajectory. It is expected that the simplified model can
satisfactorily simulate the real dynamic model in the
neighborhood of the proposed trajectory. Thus, a simpli-
fied feedback controller that accounts only for the dynam-
ics of the simplified model should be able to effectively
regulate the dynamic response of the manipulator when
moving along the corresponding optimal trajectory. How-
ever, the sensitivity of the resulting optimal trajectory to
disturbances requires further investigation in order to
determine the actual effective operating range of the
simplified controller.

In this example, the manipulator model and path specifi-
cation are the same as in the first example. The perform-
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ance index is assumed to be:
J=100[8,(1)-0,*(1)}>+100[02(1)-62%(1)]2

1
+ S 161 - 0% + (82— 8:*)2dt (17

Two simulation cases were studied. In the first case, the
actual torques were generated based on a simplified model
(i.e., equations of motion) that neglected the Coriolis
effect. In the second case, the simplified model neglected
both Coriolis and centrifugal effects.

Figures 5 and 6 display the joint displacement histories
from the cubic polynomial and the suboptimal algorithm,
respectively. The planned displacements and the actual
displacements for the two simulation cases are plotied.

Figure S5 shows that significant tracking error occurred
for the cubic polynomial trajectory when the actual torques
were calculated based on simplified models. (Here, the
tracking error is defined as the difference between the
actual and planned trajectories.) For both joints the tracking
error was largest for the second simulation case in which
both the Coriolis and centrifugal terms were neglected. For
both simplified models, the actual trajectories failed to
satisfy the final boundary conditions and deviated
significantly, especially for joint 2.

Figure 6 shows that the tracking error for the suboptimal
trajectory was reduced significantly in comparison to the
error associated with the cubic polynomial trajectory. In
fact, the tracking error for the first simulation case (in
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Figure 6. Joint displacement histories for suboptimal
algorithm for example 2



which only Coriolis was neglected) was so small that the
curves in the figure coincide. (The minimization of the
Coriolis term is achieved by making the velocity of each
joint approximately equal to zero during part of the
trajectory.) For the second simulation case (in which both
Coriolis and centrifugal effects were neglected). the tracking
error is observable in the figure; however. it remains small
relative to the tracking error of Figure 5.

In summary, this example demonstrates that the manipu-
lator dynamics can be influenced strongly by the trajecto-
ry. By adopting a “‘smart’" trajectory, it is suggested that
the effectiveness of simplified controller designs may be
increased.

CONCLUSION

This paper presents a general-purpose suboptimal trajec-
tory generation algorithm for robotic manipulators. The
proposed approach is a Fourier-based method which con-
verts an optimal control problem into a nonlinear program-
ming problem. The algorithm is especially effective in
finding optimal manipulator motions for a variety of
performance indices while sidestepping many numerical
difficulties typically encountered when directly applying
optimal control theory to find such trajectories. A novel
feature of this work is that integrated trajectory planning
and controller design is realizable by the proposed
methodology.
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