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One-Class-at-a-Time Removal Sequence Planning
Method for Multiclass Classification Problems

Chieh-Neng Young, Chen-Wen Yen, Yi-Hua Pao, and Mark L. Nagurka

Abstract—Using dynamic programming, this work develops a
one-class-at-a-time removal sequence planning method to decom-
pose a multiclass classification problem into a series of two-class
problems. Compared with previous decomposition methods, the
approach has the following distinct features. First, under the one-
class-at-a-time framework, the approach guarantees the optimality
of the decomposition. Second, for a K -class problem, the number
of binary classifiers required by the method is only K — 1. Third,
to achieve higher classification accuracy, the approach can easily
be adapted to form a committee machine. A drawback of the ap-
proach is that its computational burden increases rapidly with the
number of classes. To resolve this difficulty, a partial decomposi-
tion technique is introduced that reduces the computational cost
by generating a suboptimal solution. Experimental results demon-
strate that the proposed approach consistently outperforms two
conventional decomposition methods.

Index Terms—Dynamic programming, multiclass classification,
pattern recognition.

I. INTRODUCTION

CLASSIFICATION problem deals with objects or events
to be classified. Such a problem assumes the existence of
a known set of K classes

C =1{C,Cy...Cx}

where C is the set of known classes and the elements C}, of C
are called classes. A class can be defined as a pair of variables

Pattern = [z, C]

where z is the feature vector that characterizes the property of
CY. The goal of classification is to find a decision boundary in
the feature space in order to recognize the class C}, when a fea-
ture vector & is present. This mapping can be constructed by
a learning-from-example approach where samples with known
classes are given. A classifier can then be designed to find the de-
cision boundary in order to infer the class of unknown samples.

A direct approach for multiclass classification problems is
to use a single classifier to try to distinguish all classes simul-
taneously. To adapt neural networks to such problems, an ap-
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proach is to assign a binary string to each class as the target
output. To enhance its performance, these binary strings can be
designed with error-correction [1]-[3], so that errors by a few
of the binary numbers can be recovered. Nevertheless, sepa-
rating many classes at one time is still a very challenging task
since the complexity of the decision boundary often increases
with the number of classes. In responding to this difficulty, two
decomposition methods have been proposed. The basic idea of
these methods is to convert a multiclass problem (K > 3) into
a number of two-class problems (K = 2). In this work, the two
classes associated with a two-class problem are referred to as
the true and the false classes, respectively.

The one-against-all (1-a-a) method (e.g., [4]) converts a
K-class problem into K two-class problems. In particular,
the sth binary classifier used by the 1-a-a method is designed
by choosing C; as the true class, whereas the union of the
remaining classes (denoted as C;) is the false class. A sample is
assigned to C; when the ith binary classifier has the largest true
class output. Despite the fact that the 1-a-a method only needs
to solve two-class problems one at a time, the training sets of all
these two-class problems still come from the union of the same
large number of classes associated with the original multiclass
problem. As a result, many of the converted two-class problems
can still be very difficult to solve.

By trying to distinguish every set of C; from C; for 4,7 =
1...,K and 7 > j, the one-against-one (1-a-1) method (e.g.,
[5]) splits a K -class problem into K (K — 1)/2 two-class prob-
lems. In performing a classification, the 1-a-1 method assigns
a sample to the class that has won the largest number of true
class votes. Compared with the two-class problems of the 1-a-a
method, the two-class problems of the 1-a-1 method are often
easier to solve since the decision boundary between C; and C); is
expected to be less complex than the decision boundary that sep-
arates C; and C; (which contains C; as well as all the remaining
classes). This observation is supported by several experimental
results (e.g., [3], [6]). A tradeoff of this improvement is that the
number of classifiers increases from K to K (K —1)/2. Another
problem of the 1-a-1 method comes from the ineffective results
produced by some of its classifiers. Specifically, a binary classi-
fier trained by samples from C; and C; can produce unreliable
classification results if it is used to determine the membership
of C}, samples for k # j and k # 4. This “ineffective decision”
problem will be addressed again in Section III.

A goal of this work is to develop an alternative decompo-
sition method that requires fewer classifiers than the 1-a-a
method and achieves higher classification accuracy than the
1-a-1 method. The paper is organized as follows. The basic idea
of the proposed approach is presented in Section II. To reduce
the computational cost and improve the classification accuracy,
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Fig. 1. Artificial five-class problem.
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Fig. 2. One-class-at-a-time removal sequence for a five-class problem.

two variations of the approach are introduced in Section III.
Section IV presents experimental results that demonstrate the
efficiency and accuracy of the methods, and conclusions are
given in Section V.

II. ONE-CLASS-AT-A-TIME APPROACH

To perform the decomposition, in the proposed approach, a
binary classifier is first designed for C; and C; for every C;.
Next, for every C;, a binary classifier is developed to classify
C; and C;; for every j # i. Note that C;; represents a class
obtained by removing C; and C; from C. This one-class-at-a-
time removal procedure is continued until all classes have been
classified. This procedure requires only K — 1 binary classifiers.

The critical issue of this one-class-at-a-time approach is the
planning of the removal sequence. It is very likely that a clev-
erly arranged sequence can simplify the classification problem.
To illustrate this possibility, an artificial problem of separating
five classes based on two features, as shown in Fig. 1, is con-
sidered. To tackle this problem, it is assumed that Cy, Cs, Cs,
and Cy can be removed one-at-a-time from the training set, as
illustrated in Fig. 2. For simplicity, this work uses a sequence
of 12345—2345—345—45 to represent the removal sequence
of Fig. 2. From Fig. 1, it is easy to see that the four two-class
problems associated with this removal sequence are all linearly
separable and thus easy to solve. In contrast, a nonlinear deci-
sion boundary is required in trying to perform an operation of
12345—1245 to separate C3 and C;.

Searching an optimal removal sequence for this problem can
be formulated as a multistage decision-making problem (e.g.,
[7]). In particular, a K -class problem can be decomposed into
a decision-making problem of K — 1 stages. Fig. 3 depicts
such a multistage decision-making problem for a five-class
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Fig. 3. Tree structure containing all possible one-class-at-a-time solutions for
a five-class problem.

problem. Essentially, each path that connects the starting and
ending nodes of Fig. 3 represents a possible one-class-at-a-time
solution for the given multiclass problem. In addition, the
tree structure (also called version space in machine learning
literature) of Fig. 3 contains all such possible solutions. For
each stage, the decision that must be made is which class to
be removed from the remaining training set so that the cost
function can be minimized. Since the goal is to minimize the
classification error, this work specifies the cost function as the
number of misclassified samples.

Based on the principle of optimality, dynamic programming
(DP) can be used to find the global optimal solution for the mul-
tistage decision-making problem. For the multiclass classifica-
tion problem under consideration, the principle of optimality
yields the following recurrence relation:

7(e)) =min[J () — () - 0y)))
+ T (Cj,” —C’%)] (1

for M = 3,4,...K. Here, the asterisk indicates that the
function has been optimized and thus has the optimal value.
In addition, C';,” represents the pth combination of M classes
from the K classes of C, CI%I is the gth member class of C'é”,
and J *(C’]])M ) and J *(C;)u — C)T) are the costs associated with
the optimal one-class-at-a-time removal sequences for Cﬁ/l and
C)' —CM  respectively. Also, the term J(C)' — (C,)' —C2M))
is the cost associated with the operation of classifying C'IJ)VI
into C’gj — CI% and C% . Since the last decision for the pro-
posed one-class-at-a-time approach is to remove a class from a
three-class problem, the solution process is initiated by setting
M equal to 3. As a result, (1) can be written as

7 (€p)=min[7 (€} = (63-03,) )+ (C3-C3,)] -
@

After removing C32, from C5, C — C3, contains only two
classes. As a result, J* (C’f’, — (3 ) can be determined by sepa-
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rating every possible set of C; and C; for¢, j = 1..., K and
1 > 7. Note that the 1-a-1 method also solves the same classifi-
cation problems.

By applying the recurrence relation recursively, the solution
procedure is continued until M = K. When M = K, (1) can

be written as
[7(er — (er -en))

+r (e -ci)]. »

J* (Cff) = mqin

Note that there is only one possible C’I{{ , which is the union of
all classes, that is, C'. Therefore, (3) can be rewritten as
J*(C) = min [J(C - C,) + 1*(C,)] )

= min
q

..... , K. Note that the binary classifiers associated
with J(C — ~C, ,) are identical to those employed by the 1-a-a
method.

The results demonstrate that the binary classifiers developed
by the conventional 1-a-a and 1-a-1 methods are only a subset of
the classifiers used by the proposed approach. For example, for
the five-class problem of Fig. 3, the classifiers employed by the
1-a-1 correspond to the rightmost arrows, whereas the leftmost
arrows represent the binary classifiers used by the 1-a-a method.

A distinct advantage of DP, compared with other optimiza-
tion strategies such as a genetic algorithm, is that it guarantees a
global optimal solution. Therefore, if the one-class-at-a-time re-
quirement is relaxed, DP can find better solutions. The tradeoff
is that the number of possible solutions increases dramatically
with the number of classes and the problem then may become
computationally too intensive to solve. The proposed approach
represents a compromise between computational cost and clas-
sification accuracy.

III. TWO VARIATIONS OF THE PROPOSED APPROACH

A. A Suboptimal Version of the Proposed Approach

By searching the entire solution space systematically, DP
guarantees global optimality for the one-class-at-a-time re-
moval sequence. However, to perform such a search, it can
be shown that the number of converted two-class problems is
SR (ED (K — i) + (%). This number increases rapidly
with the number of classes K hindering the application of the
proposed approach to problems with a large number of classes.

To address this “curse of dimensionality” difficulty, this work
proposes a suboptimal approach by applying the one-class-at-a-
time decomposition only to a subset of C and uses the conven-
tional 1-a-1 method to classify the remaining classes. The spe-
cific steps of this suboptimal approach are as follows.

1) Based upon the available computing power, determine the
number of classes that is computationally feasible for the
proposed approach. Let this number be M.

2) Apply the 1-a-1 method to the given K -class problem.

3) Forevery M-class subset of the given K classes, determine
the number of internal classification errors, which is the
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number of training samples that are incorrectly assigned to
a class that belongs to the same M -class subset.

4) Find the M-class subset that has the largest number of in-
tert@}\/jclassiﬁcation errors. Denote this set of M classes
as C . The union of the remaining classes is, therefore,

~M
c-¢C
5) Apply the proposed one-class-at-a-time approach to de-
~ M
compose C
6) To classify a sample, the 1-a-1 method is used first. The
classification result is accepted provided that the sample is
~M
assigned to one of the classes of C — C . Otherwise, the
sample is classified again by using the one-class-at-a-time
removal sequence developed in step 5).
This technique does not guarantee a true optlmal solution
since it disregards the errors of assigning C'

~M ~M
C" and the errors of misclassifying C — C samples to C
However, by replacing the 1-a-1 method with the proposed de—

samples to C —

M
composition approach for classifying C (which has the largest
internal classification error among all the M -class subset), it is
M

expected that the number of internal classification errors of C
can be reduced, thus effectively improving the overall classifi-
cation accuracy.

B. Building a Committee Machine

Based on the fusion of multiple classifiers, it has been shown
that a committee machine can provide higher classification ac-
curacy than an individual classifier (e.g., [8] and [9]). As an
example, the 1-a-1 method is essentially a committee machine
with K(K — 1)/2 binary classifier members. Thereafter, the
symbol B(, j) is used to represent such a binary classifier that
is trained to classify C; and C}.

As described in Section I, one weakness of the 1-a-1 method
is the ineffective decision problem, which occurs when trying
to use a classifier B(%, j) to classify samples that do not belong
to C; or C;. The goal of this subsection is to introduce a new
committee machine to resolve the ineffective decision problem
by using the one-class-at-at-a-time technique.

Let S;; represent the one-class-at-a-time removal sequence
that has B(1, ) as its final classifier. The basic idea of this new
committee machine is to use the first K — 2 binary classifiers
of S;; to “filter out” samples that do not belong to C; or C;. By
requiring C; and C; to be the last two classes to be processed,
the removal sequence S;; can be determined by rewriting the
recurrence relation of (1) as

[ T (Oj,‘“i’” . (Oﬁf(i’j) _ O’ﬁ,‘g(i’”))

e (sz)\/fa,j) N C%(ivﬂ)} (5)

J* (Cﬁj(i’j)) = min
q

for M = 4, ... K. The definition of C
except that C'M(Z /) must contain C; and C;. Similarly, C,

is the gth member class of C;U(L ) Note that CM(”) 75 C;
or C; since C; and C; have to be the last two classes to be
classified.

M
) is similar to Cp
M (4,9)
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To initiate the recurrence relation of (5) for a particular set of
1 and 7, the following results are first setup for k = 1... K,
k # j,and k # 4:

J* ((Cz UC]' UC’k)) = J((Ol UC]' UC’k) — (Cz UCJ'))

This yields J*(C2/ @) — Cpi ) for M = 4. Relation (5) can
then be applied recursively until M = K.

The proposed committee machine uses the same set of clas-
sifiers B(4,j) as the 1-a-1 method. However, instead of using
B(i, j) directly, the committee machine uses .S;; to determine
the “effectiveness” of B(i, j)’s decision. In particular, the first
K — 2 classifiers of S;; can be viewed as a C;; sample filter,
which can prevent B(¢, j) from processing C';; samples. There-
fore, in this committee machine, the classifier B(i, ) attends
voting only when the sample is not assigned to other classes
by S;; before reaching classifier B(%, j). Apparently, the relia-
bility of this voting depends on the efficacy of \S;; in filtering
C;; samples. To evaluate its performance, S;; is used to clas-
sify the entire training set and count the samples that actually
enter the final classification stage of S;;. Among these samples,
the ratio of C;; samples is computed and denoted as w;;. Since
this ratio characterizes the likelihood of an “ineffective deci-
sion,” the weighting coefficient for B(%, j)’s voting is chosen
as 1 — wj;. Finally, the membership of a sample is determined
by counting the weighted votes from all the binary classifiers of
B(i, j)-

In performing a classification, the basic version of the pro-
posed approach uses K — 1 binary classifiers. In contrast, with
K(K — 1)/2 members, the committee machine version of the
proposed approach uses K (K — 1)?/2 binary classifiers. As
a result, the computational requirement will increase propor-
tionally. This factor should be taken into consideration when
implementing the proposed committee machine approach for
real-time classification tasks.

IV. EXPERIMENTAL RESULTS

The first part of this section compares the approach developed
in Section II with three conventional methods by using them
to solve ten real-world problems obtained from the University
of California at Irvine, Irvine, repository of machine learning
databases and domain theories [10]. The contents of these ten
data sets are summarized in Table I.

In testing these methods, the multilayered perceptron (MLP)
is chosen as the base classifier [11]-[13]. The numbers of hidden
layers and units are chosen as one and five, respectively. No ef-
fort has been made to optimize the structure of the MLP. The ini-
tial weights are generated randomly from a uniform distribution
between 0-0.1. The MLP error measure is chosen as the conven-
tional mean square error with the error defined as the difference
between the desired and actual outputs. In this study, the MLP
is trained by adaptive boosting (AdaBoost) [14]. The reason for
using AdaBoost is that many empirical studies have shown that
it can significantly improve the performance of the neural clas-
sifiers and is relatively insensitive to overfitting (e.g., [15]).

In comparing the tested methods, the data set is divided into
training, validation and testing subsets with an 8:1:1 ratio. The
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TABLE 1
SUMMARY OF THE TESTED DATA SETS

Number of Number of Number of
Dataset

Samples Classes Features
Iris 150 3 4
Balance-scale 625 3 4
Lymphography 148 4 18
Hypothyroid 3372 4 28
Vehicle 846 4 18
Car-evaluation 1728 4 6
Satimage 6435 6 36
Glass 214 6 9
Segmentation 2310 7 18
Yeast 1484 10 8
Pendigits 10992 10 16
Vowel 990 11 10
Krk 28056 18 6
TABLE 11

CLASSIFICATION ACCURACY AND COMPUTATIONAL COST OF THE
SINGLE CLASSIFIER

Classification Computing Time

Dataset

Accuracy (sec)
Iris 96.67+4.43 22
Balance-scale 90.64+3.47 13.5
Lymphography 82.50+8.94 35
Hypothyroid 96.50+1.13 188.8
Vehicle 80.52+4.10 40.5
Car-evaluation 92.30+1.77 54.9
Satimage 86.21£1.29 2322
Glass 64.33£10.05 6.4
Segmentation 93.13+1.73 117.0
Yeast 56.224+3.57 65.2
Pendigits 94.66+0.70 513.9
Vowel 73.1843.97 128.7
Krk 39.61+0.93 2462.8

training subset is used to adjust the connection weights of the
MLP. The validation subset is used by the early-stop technique
to avoid overfitting. The testing subset is used to characterize the
generalization accuracy of the MLP. For the sake of reliability,
the training process is repeated 100 times by using randomly
partitioned training, validation, and testing subsets. This paper
reports the average of the testing subset classification accuracy.

The experimental studies were performed using an AMD XP
1700+ based PC. To set up the basis for comparisons, the prob-
lems were first solved using a single MLP. Table II presents the
means of the classification accuracy and the computing times
averaged from 100 trials for each data set. Here, the classifi-
cation accuracy is defined as the percentage of the correctly
classified testing samples. Table III summarizes the means and
the standard deviations of the classification accuracy associated
with the three decomposition methods. By comparing these re-
sults with the results of the single classifier of Table II, it can be
seen that the 1-a-a method achieves higher accuracy in six of the
ten tested problems and the 1-a-1 method gives a smaller classi-
fication error in seven of the ten problems. In contrast, the pro-
posed approach outperforms the single classifier method in all
of the tested problems. In addition, the proposed approach has
the smallest classification error in all but the last tested problem.

To compare the computational cost, Table IV summarizes the
computing time ratio of the three decomposition methods. Here,
the computing time ratio is defined as the ratio of computing
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TABLE III
SUMMARY OF CLASSIFICATION ACCURACY FOR THE TESTED CLASSIFICATION
PROBLEM (/X = 10)

D Tested Methods
ataset -
1-a-a 1-a-1 1-at-a-time
Iris 95.81+5.23 95.53+5.59  96.67+4.43
Balance-scale ~ 94.42+3.06 95.21£2.98 95.89+2.76
Lymphography 83.18+8.71 82.54+8.82  83.21£9.05
Hypothyroid 94.93+1.01 96.13+£1.39  96.88+0.81
Vehicle 81.02+3.86 81.93+3.71 82.43+4.14
Car-evaluation  97.82+1.11 97.62+1.36  98.05+1.06
Satimage 89.85+1.27 90.81£1.11 90.95+1.17
Glass 45.64+1229  61.33+10.04 66.00+9.41
Segmentation ~ 96.50+1.13 96.39+1.33  97.01x1.14
Yeast 50.86+1.42 57.41£2.95 56.38+5.78
TABLE IV

SUMMARY OF COMPUTING TIME RATIO WITH RESPECT TO SINGLE CLASSIFIER
APPROACH (K = 10)

D Tested Methods
ataset -
1-a-a 1-a-1 1-at-a-time
Iris 1.5 2.9 43
Balance-scale 52 3.6 8.7
Lymphography 3.1 6.6 16.2
Hypothyroid 2.1 2.6 10.7
Vehicle 23 3.6 143
Car-evaluation 29 7.3 24.6
Satimage 6.0 21.0 197.0
Glass 2.1 2.7 50.1
Segmentation data 3.0 7.3 210.5
Yeast 3.7 4.0 1180.9

time of the tested decomposition method to the computing time
of the single MLP. As expected, among the four tested methods,
the proposed approach is computationally least efficient. In ad-
dition, as shown in Table IV, the computational cost of the pro-
posed approach increases rapidly with the dimension of the clas-
sification problem. For example, for the ten-class yeast problem,
the computing time of the proposed approach is three orders of
magnitude larger than that of the single classifier. In contrast,
computationally, the 1-a-a and 1-a-1 methods are only about
four times slower than the single classifier.

Inresponding to this difficulty, the partial decomposition tech-
nique is tested on the last four problems of Table I for which the
number of classes is ten or greater. In applying the technique, the
number of classes to be decomposed M is chosen as 3, 4, 5, and
6. In addition, since the basic version of the proposed approach is
less accurate than the 1-a-1 method in dealing with the ten-class
yeast problem, the proposed committee machine method is em-
ployed in this part of the experiments. The resulting classifica-
tion accuracies and computing time ratios are summarized in
Tables V and VI, respectively.

As shown in Table V, even with partial decomposition, the
proposed suboptimal one-class-at-a-time approach outperforms
the 1-a-1 method in all four problems. As M increases, the clas-
sification accuracy improves. Also, as shown in Table VI, the
computational cost also increases with M. However, with the
partial decomposition, this cost has been reduced significantly.
For example, for the ten-class yeast problem, the partial decom-
position reduces the computing time ratio from 1180.9 to 36.15
(for M = 6 or better), demonstrating the effectiveness of the
partial decomposition.
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TABLE V
SUMMARY OF CLASSIFICATION ACCURACY FOR THE TESTED CLASSIFICATION
PROBLEM (K = 10)

Method

Dataset 1-a-1 One-class-at-a-time Committee Machine

M=3 M=4 M=5 M=6
Yeast 58.09+3.85 58.10+£3.82 58.24+3.86 58.42+3.69 58.58+3.72
Pendigits 98.55+0.39 98.57+0.38 98.78+0.34 98.95+0.30 99.07+0.29
Vowel 84.74+4.57 85.08+4.60 87.19+4.17 88.59+3.74 90.23+3.43
Krk 50.50+0.77 50.36+0.76 50.70+0.75 50.84+0.79 51.06+0.80

TABLE VI

SUMMARY OF COMPUTING TIME RATIO WITH RESPECT TO SINGLE CLASSIFIER
APPROACH (K = 10)

Method
Dataset l-a-1 One-class-at-a-time Committee Machine
M=3 M=4 M=35 M=6
Yeast 2.67 343 7.45 16.60 36.15
Pendigits 2.44 3.67 6.19 14.73 3791
Vowel 3.30 3.65 6.14 12.95 38.14
Krk 2.88 3.20 4.32 6.98 13.56

V. CONCLUSION

This paper proposes a one-class-at-a-time method to decom-
pose a multiclass problem into a number of two-class problems.
In particular, the basic version of the proposed approach splits
a K -class problem into K — 1 two-class problems. The plan-
ning of the one-class-at-a-time removal sequence is formulated
as a multistage decision-making problem, which is then solved
using dynamic programming.

To reduce the computational cost of the proposed approach,
which increases rapidly with the number of classes, a partial
decomposition technique is introduced to determine the sub-
optimal solution. By using the one-class-at-a-time removal se-
quence to alleviate the ineffective decision problem, this paper
also develops a committee machine framework to improve the
classification accuracy.

Experimental results show that the proposed approach con-
sistently provides higher classification accuracy than the con-
ventional single classifier 1-a-a and 1-a-1 methods when the
number of classes is less than ten. However, for a tested ten-class
problem, the computational cost of the proposed approach is
three orders of magnitude larger than that of the single classi-
fier method. By applying the partial decomposition technique,
this computational cost can be reduced by a factor of about 30
or better. In addition, with the assistance of the proposed com-
mittee machine framework, the suboptimal solution produced
by the partial decomposition technique provides better classifi-
cation accuracy than conventional methods.
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