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I. Preface 

The goal of this thesis is to investigate the dynamic and static compaction characteristics 

of porous silica powder. This goal is accomplished by experimentally evaluating and 

comparing the static compaction characteristics, and numerically evaluating and 

comparing a variety of equations of state governing dynamic compaction of porous 

materials. The static results showed that the silica powder has an internal porosity that is 

unaffected by the static compaction process of making a porous silica wafer. The 

dynamic results show that the previously unverified KO for the relatively low shock 

velocity – particle velocity region and highly distended powders predicted the 

experimental results as well as CTH. Neither the P-a compaction model nor the Mie-

Grüneisen model was able to accurately predict the dynamic compaction characteristics 

of porous silica powder.  
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1. Introduction 

The purpose of this research is to understand the static and dynamic compaction 

characteristics of a granular porous material. This goal is accomplished by numerically 

evaluating and comparing a variety of equations of state governing dynamic compaction 

of porous materials.  These numerical simulations are assessed by comparing their output 

to experimental and analytical results, where available. Specifically this study intends to 

computationally explore low particle speed – high porosity silica, implementing two 

specific equations of state for direct comparison. The first equation of state is based on 

curve fitting existing data for porous silica, while the second approximates the porous 

equation of state; both are to be used in a hydrocode. A hydrocode is defined as a 

numerical scheme for simulating 1, 2 or 3 dimensional fluid or solid dynamic 

experiments. An unverified hydrocode found in Wilkins1 will be directly compared to a 

highly regarded hydrocode from Sandia National Laboratories using the above two 

equations of state. Validation of the lesser known hydrocode will require each equation of 

state to attempt to simulate data from experiments conducted at Cambridge University.  

The distinguishing characteristic of the work undertaken in this thesis is that compaction 

takes place as a rapid or shock process.  This rapid compaction can be approximated as 

an irreversible adiabatic process.  Since the material is initially distended, the inter-

granular dynamics, such as grain-on-grain frictional heating as a result of compaction, 

can be a play a significant role in the overall bulk thermodynamic behavior of the 

material. Thus initial porosity becomes a parameter which can cause deviations from the 

solid material compaction dynamics. As a result, the equations of state governing a shock 
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compacted porous material must be modified relative to the solid material equation of 

state and include, at a minimum, an initial porosity functionality.   

 

1.1. Relevance  

The dynamic compaction of granular porous materials is of fundamental interest within a 

variety of scientific disciplines, examples include geo- and astro- physics processes, 

energetic material dynamics, high energy density physics, etc.  For example, the rapid 

compaction of astrophysical processes, such as impact cratering, can be significantly 

effected by the dynamic characteristics of shock compaction.2,3 Understanding the 

compaction dynamics allows scientists to assess not only the mass and velocity of 

interstellar or planetary colliding bodies, but also the geological material composition of 

the bodies and even have implications with regards to astrobiology. 

 The compaction of porous energetic materials can help scientists understand how 

explosive powders react under various conditions. For example, porous high melting 

point explosives (HMX) used by the military for warhead and solid propellant 

applications has had its dynamic compaction characteristics widely analyzed.4,5  Another 

example occurred as a tragedy on the USS Iowa in 1989, where granular material 

behavior and the associated internal heating resulted in the accidental detonation of 

explosive materials that cost the lives of 47 sailors.  

 There are several advantages that can be harnessed from analyzing high energy density 

dynamic shocks in porous media and the computational models that predict shocks 

through a porous material. Meyers6 notes that, “porous materials can achieve very high 

internal energy states at relatively low pressures”. Figure 1 (a) shows that for nickel 
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based Inco IN 718 powder as the theoretical density (TD) is reduced at constant pressure 

the energy that the shock can attain increases significantly.  

          

(a)                                                                         (b) 

Figure 1. (a) Calculated pressure-shock energy for IN 718 powder at various distensions 

(b) Schematic of P – v diagram for a solid and porous material. [6]. 

This can also be seen in Figure 1 (b) where in Pressure vs. specific volume space, P- v, at 

a constant pressure PH, the energy for porous compaction is the area under the triangle 

formed by points a, b, and c. This area is much larger than the energy for solid 

compaction i.e. the area under the triangle formed by points d, e, and f. 

Meyers [6] also states that high amplitude shock waves in powders tend to be dampened 

as they pass through the material. This is due to the compaction process that must occur 

before the material can begin to crush; deformation after solid density is achieved. The 

energy required to crush a material can be illustrated by any one of the three shaded 

triangles in Figure 1a, for example the triangle formed by points a, b, & c. This is also the 

energy the shock wave loses as it passes through the material and is thus attenuated. In 

order to achieve the same peak pressure in a powder as a solid can produce more energy 
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needs to be put into the system in order for the attenuation effects of the powder to be 

overcome. Therefore Meyers [6] states that scientists can use this knowledge to achieve 

“high energy states” readily. 

 

1.2. Experimental Apparatus and Process 

The material of interest for this research is Degussa Sipernat 50 µm granular amorphous 

silica powder. An example experimental setup is shown in Figure 2 (a). The test cell is a 

circular cylinder with the center axis running horizontally. A photograph of the same test 

cell is shown in Figure 2 (b) with the dimensions from 2 (a) applying to 2 (b).  

 

(a)                                                               (b) 

Figure 2. (a) Schematic of a test cell and (b) photograph of same test cell. 

Figure 2 (b) shows the front plate on the left and the target before any powder has been 

inserted shown on the right. The target has an aluminum annulus that holds the powder in 

place with the front and back plates. The “flyer plate” is moving at an initial velocity and 

strikes the initially stationary “front plate”. A shock then traverses the target through the 

front plate and backwards through the flyer plate.  This initial shock signature is captured 

by the first strain gage. Once the shock reaches the powder, the impedance difference 

between the materials increases or decreases the magnitude of the shock as it continues 
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on through the powder. The impedance difference also causes a reflected shock that is 

sent back into the front plate at the same lower or higher magnitude as the transmitted 

shock. The shock wave compacts the powder and then passes on to the back plate. The 

shock goes through another impedance attenuation as it enters the back plate sending a 

reflected wave back through the powder and a transmitted wave into the backplate. The 

transmitted wave reaches the back strain gage, and then continues on to the free surface.  

The shock is reflected back into the back plate as a “rarefaction” wave. This wave travels 

significantly faster than the initial wave, and if the experiment is setup properly, the 

reflected and rarefaction waves do not pass through the gages. Otherwise, they can 

attenuate the relevant data, and the experiment will give false results. Assuming the 

experiment is setup properly the one-dimensional longitudinal stress time histories are 

recorded for each gage. From the gage date, the shock velocity Us and particle velocity up 

are determined using an impedance matching technique. 

Results of experiments conducted on silica powder with various forms and densities are 

shown in Figure 3. The results were compiled from several sources.7  
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Figure 3.  Collection of Us-up Hugoniot data for porous silica.  

The data shown in Figure 3 with particle velocities below 1 km/s were obtained from 

experiments conducted more recently, and the older data fit the more current data points 

fairly accurately. At fully consolidated density, fused quartz, changes slope to a negative 

direction as the particle velocity decreases below 500 km/s. This means that the shock 

velocity increases as the particle velocity decreases. This phenomenon is counterintuitive, 

and is due to the fact that at the lower impact velocities the elastic wave ‘outruns’ the 

plastic wave, thus the change in slope at 2 km/s is where the elastic-plastic transition 

occurs.  

A variety of computational hydrocodes and equations of state have been developed to 

model the compaction of porous materials. These hydrocodes have been successful at 

modeling relatively low porous metals & nonmetals at particle velocities greater than 1 

km/s. However, in order to understand the material characteristics of porous materials, 

one has to first develop the material characteristics of its solid form. 
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2.  Literature Review 

2.1. Mie-Grüneisen Equation of State  

A Hugoniot is defined as the loci of states that can be achieved across a single shock 

traveling into a material at rest.  A Hugoniot line is illustrated in Figure 4 as the curved 

line labeled “shock Hugoniot”.  

 

Figure 4. Shock Hugoniot, Rayleigh line, and release isentrope in P – v space [1].  

When a material is shock loaded, the material state, for example specific volume v, jumps 

from the initial state, v0, to somewhere along the Hugoniot, state v1 as seen in Figure 4.  A 

shocked material follows the Raleigh line which is a straight line from state 0 to state 1 in 

a particular space i.e. P-v space as seen in Figure 4. The material does not follow along 

the Hugoniot.  As the material is shocked, the temperature begins to rise from point 0 to 

point 1. When the material is unloaded it follows along the release isentrope to the 

material state 2, which has a higher specific volume than state 0 due to irreversible 

compression as seen in Figure 4.  The work compression of the material increases the 

temperature so that T2 > T0. The grey area bound by the shock Hugoniot and the release 

isentrope shown in Figure 4 represents the irreversible work. 
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The Rankine-Hugoniot relations (Equations 1-3), sometimes called the “jump equations” 

are used to manipulate the solid Hugoniot derived from the conservation equations of 

mass, momentum, and energy. The derivation is given by Meyers [6]. 

  (1) 

  (2) 

  (3) 

Us is the shock velocity, up is the particle velocity, v is the specific volume, P is the 

pressure, and E is the energy. The subscript 0 refers to the initial state.  

There are 5 assumptions involved in Equations 1-3. The first assumption, is that the there 

is no apparent thickness to a discontinuous shock surface. Second, there are no body 

forces or conduction acting at the shock surface. Third, the shear modulus of the material 

is 0, and acts the material like a fluid as the shock passes through it. Fourth, there is no 

elastic-plastic behavior and therefore the material reacts instantaneously to a shock. Last, 

the material does not change its phase. 

Equations 1-3 have four unknowns and therefore one additional constitutive relation is 

required for closure to the system. The fourth equation is an empirical relationship, also 

known as a Hugoniot relationship, which relates Us, the shock speed in a material, and up, 

the particle velocity in a material. This Us-up relationship is shown in Figure 3, and 

approximated by the polynomial in Equation 4. 

0 s

s p

v U
v U u
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0
0
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  (4) 

In Equation 4, c0 is the sound speed at 0 pressure, and s1 and s2 are polynomial 

coefficients. Figure 5 shows the linear Us-up relationship for aluminum, 

Polymethylmethacrylate (PMMA), and fused quartz. 

 

Figure 5.  Collection of Us-up Hugoniot data for various materials.  

Equation 4 can be reduced to a linear relationship for most materials as seen in Equation 

5. 

  (5) 

Although equation 5 represents an assumption as to the Us-up behavior, it can be used in 

conjunction with equations 1-3 to produce many other expressions relating the state 

variables.  Any relation derived in this fashion is also called a Hugoniot.  Combining 

equations 1-3, and 5 leads to the relation for the solid Hugoniot pressure given in 

Equation 6. 

 (6) 

2
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The total energy E for the Mie-Grüneisen (MG) equation of state (EOS) is composed of 

the thermal and cold energy reference functions, i.e. the solid Hugoniot curve in Figure 1 

(b). The cold compression curve at 0K is associated with the compression of the material 

intermolecular/atomic compression. The thermal compression curve is associated with 

the material intermolecular/atomic vibration.  As a material's porosity changes the cold 

compression 0K curve does not change, since the material does not change. It is simply 

the cold curve for the underlying solid material. However, since the internal friction 

associated with the granular motion involves heating in porous materials, the thermal 

portion will increase. The result is seen in Figure 1 (b); the porous Hugoniot has a steeper 

slope, and thus lies above the solid Hugoniot.  

Materials are governed at the microscopic level by statistical mechanics and at the 

macroscopic level by classic continuum thermodynamics. Therefore a bridge between the 

two worlds called the Grüneisen coefficient, Γ; see Zeldovich et al.8 for derivation. The 

Grüneisen coefficient is only a function of v as seen in Equation 7. 

  (7) 

vf is the vibrational frequency of an atom, and V is the volume. Meyers [6] suggested that 

Equation 8 can be used as a simplified approximation for the Grüneisen coefficient.  The 

following expression is an approximation. 

  (8) 

The subscript 0 refers to the zero pressure state.  

ln
ln

fv
V

¶æ ö
G = -ç ÷¶è ø

0 12 1sG @ -
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The Mie-Grüneisen equation of state can be written as Equation 9 from Zeldovich et al 

[9].  

  (9) 

 

PH and EH are the Hugoniot pressure and Hugoniot internal energy reference functions 

from Figure 1 (b), respectively.  

These above equations are only valid for a shock profile that is steady state and in a 

coordinate system where the material is not moving in front of the shock. This equation 

of state is the most common starting point for porous compaction models, because the 

pressure and internal energy at a point off the Hugoniot curve are directly related to the 

pressure and internal energy in the Hugoniot curve by Equation 9 along an isochore. 

 

2.1.1. Anomalous Hugoniot  

For most materials, the P-v Hugoniot is a monotonically increasing function with a 

negative slope, as illustrated in Figure 4.  It is possible that the highly distended powders, 

the theoretical compacted Hugoniot has a positive slope in P-v space as seen in Figure 6.  

If this occurs, the P-v Hugoniot is known as an anomalous Hugoniot9.  This behavior is 

counter intuitive since an anomalous Hugoniot implies that as the material volume is 

increased, its pressure also is increased. 

( )H HP P E E
V
G

- = -
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Figure. 6.  P-v Hugoniot data for un-compacted and fully compacted porous silica 

As the initial porous material density approaches the fully consolidated density its 

Hugoniot behavior will gradually start to resemble the solid material Hugoniot, in this 

case fused silica. For this thesis research the anomalous Hugoniot is not implemented into 

any of the models of interest. It is not clear from the experimental data obtained whether 

the silica of interest possesses anomalous material behavior. However there has been a 

novel attempt to model this phenomenon to be discussed in section 3.5 and 3.9. 

 

2.2. Snow Plow Compaction Model 

The simplest equation of state for modeling the dynamic compaction of a porous medium 

is the snow plow model. This model assumes a path where the pressure during 

compaction is 0 i.e. v00 to v0, until complete compaction, i.e. v ≤ v0 , where the pressure 

curve in P-v space follows smoothly to the solid state Hugoniot as seen in Figure 7.  



 22 

 

Figure. 7 Solid Hugoniot curve in P-v space for the snow plow model. 

 

This model will not be used in this research, because the model isn’t readily available in 

CTH, one of the export controlled programs of interest. However, Borg et al.10 used this 

model in depth in another program and found some success modeling the silica of 

interest.  

2.3. P-α Compaction Model 

One of the earliest computational models to incorporate dynamic compaction was 

suggested by Herrmann11 and was based on a simple plastic model that takes a more 

complex path through compaction as compared to the snow plow model. The P-a model 

utilizes a piecewise continuous three part Hugoniot representing the fully compacted, un-

compacted, and elastic regions, respectively. A new parameter, called the porositya, is 

defined as the ratio of the porous specific volume to the solid specific volume, or, a = v / 

v0. Thus a is always greater than one and when a equals one the material is fully 

consolidated.  The porous material is initially at a specific volume, v00, as indicated in 

Figure 8.   
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(a)                                                                                        (b) 

Figure 8. (a) P-v and (b) P-a space illustrating P-a model 

The material starts at ae, and then elastically compacts until the maximum elastic 

pressure Pe is achieved at ap, the porosity at which the material exhibits an elastic-plastic 

transition. The elastic region is governed by Equation 10, 

 (10)  

In the regime of plastic deformation i.e. the un-compacted regime, the material crushes as 

a parabolic function with respect to pressure as Equation 11. 

 (11)  

Ps is defined as the plastic-compaction transition to the solid Hugoniot curve. These 

quantities are illustrated in Figure 8. Equation 11 is a second order simplified relation 

found to work well with porous iron from experimental data by Butcher et al.12 Higher 

order approximations for this model are available in Herrmann [10].  
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Once the material is fully compacted at Ps, the material smoothly follows the 

theoretically compacted Hugoniot to the Mie-Grüneisen equation of state for a solid 

given by Equation 9.  

 

2.4. Meyers Porous Compaction Model 

Substituting the reference states and the compacted internal energy Equation 3 into 

Equation 9 leads to the theoretical P-v Hugoniot for the fully compacted porous material 

shown in Equation 12, 

 (12) 

If the material dopes not reach complete compaction after plastically deforming, the 

pressure releases along an isentrope as seen in Figure 4. This equation has found success 

in modeling Inconel 718 powders that are greater than 60% of the initial density, as seen 

in Figure 8. 

 

Figure 9. Measured and calculated Hugoniots for Cu with two initial densities: 6.052 and 7.406 g/cm3 [6]. 
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An additional thermodynamic relation will be derived here for later use in section 5.2.3 

namely: particle velocity – specific volume, up-v. Combining Equations 1 and 2, but 

substituting v0 with v00, setting P0 = 0, and solving for P results in Equation 13.  

 (13) 

Combining Equations 12 and 13 and solving for up results in Equation 14. 

 (14) 
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3. Additional Porosity models 

There have been many other novel attempts to model porous compaction of materials. 

The following sections 3.1-3.9 discuss improvements to the P-α model as well as 

additional models with limitations for each. 

 

3.1. Dijken and De Hosson Compaction Model 

Djiken and De Hosson13 suggest, as an improvement to the P-α model, that any material 

with a  porosity α < 2.5 should have an additional error term applied according to the 

below formulation due to non-linearity from the Us-up curve. The relation is derived from 

the Rankine-Hugoniot relations of Equations 1-3 using the above nomenclature and 

adding a fixed error term inserted into the volume as Equations 15-17:  

 (15) 

 (16) 

 (17) 

p refers to the powder. In terms of Us-up space Equation 15 can be rewritten assuming 

that the specific volume behind the shock wave equals the solid specific volume at 0 

pressure as in Equation 18. 
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Therefore the pressure in the powder Pp can be written after combining Equations 15-18 

as Equation 19 where the density initially is ρ0. 

 (19) 

The results and limitations of this model and next 4 sections 3.2-3.5 will be discussed in 

section 3.5.1. 

 

3.2. Simons and Legner Compaction Model 

Simons and Legner14 propose that the success of MG equation of state is merely due to 

the fact that the thermal energy, ET, and pressure, PT, dominate cold energy, EC, and 

compression PC, at high pressures. The equation of a shock Hugoniot for a porous 

material in P-E space can be seen in Equation 3. The energy and pressure are the sum of 

the thermal, T, and compressive, C, parts, respectively as seen in Equation 20 and 21. Also 

the thermal pressure and energy have the constitutive relation in Equation 22. 

 (20) 

 (21) 

 (22) 

Combining Equations 3 and 20-22 gives the result of Equation 23. 
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  (23) 

The situation here is analogous to that of a shock wave in a perfect gas. The elastic terms 

are insignificant with respect to the inelastic terms and thus a first order model will give 

accurate Hugoniots at high pressures. A higher ordered elastic model for low pressures 

can be used in conjunction with Equation 23, while still predicting the Hugoniots 

accurately over all pressures. Therefore by expanding the pressure due to cold 

compression for volume at v0 gives the result in Equation 24. 

 (24) 

K0 is the cold compression coefficient and is related to the sound of speed in a solid by 

Equation 25. 

 (25) 

The work done against PC in compressing the material from the rest state v0 is EC for ρ 

near ρ0 is given in Equation 26. The elastic energy is 0 at v0. 

 (26) 

Dropping the second order terms in (ρ- ρ0), ρ EC is no longer dependent on PC, which is 

consistent with the requirement that PC and EC only be accurate in the limit of low 
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pressure. Thus substituting Equations 24 and 25 into Equation 23 the equation for the 

Hugoniot of a porous material is Equation 27. 

 
(27) 

 

3.3. Oh and Persson Compaction Model 

Starting with the Rankine-Hugoniot Equations 1-3 and the linear relationship between 

shockwave velocity Us and particle velocity up, Oh and Persson15 derived Equation 28 as 

a new equation of state where H is the Hugoniot state. 

 (28) 

This new equation of state can be applied to predictions of solid and porous Hugoniots as 

seen in Figure 10. 

 

Figure 10. Solid and porous Hugoniot curves for Oh and Persson [19] 
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be negligible. The following nomenclature will be used in this derivation according to 

Figure 10, and seen in Equations 29-31. 

 

(29) 
 
(30) 
 
(31) 

Forcing the pressure at states 2 and 3, the energy at states 1 and 3, as well as the 

difference in volume from state 3 to state 2 and state 2 to state 1 approximately equal, 

respectively from Figure 10. Then the solid Hugoniot relations from Equations 1 and 3 

and the above relations in Equations 29-31 yield Equations 32-36. 
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There are nine unknowns between the eight equations (Equations 29-36), with two initial 

conditions (v00 and v0), and two constants (bulk sound speed c0 and slope s1). Therefore 

Hugoniot relations can be explicitly solved for in terms of any combination of two 

thermodynamic variables between v3, E3, and P3.  

 

3.4. Wu and Jing Compaction Model  

One important progression was developed by Wu and Jing16 from a common drawback to 

the Oh and Persson as well as the Dijken and De Hosson compaction models; that the 

model was dependent upon the pressure region. The high pressure region is defined as the 

pressure region significant enough for complete void collapse i.e. complete compaction, 

and the low pressure region is defined as having incomplete compaction and requiring an 

isobaric path to relate the solid or reference material to its respective porous state. Figure 

11 demonstrates the porous and solid Hugoniot (zero-Kelvin isotherm) curves in P-v 

space with isochoric and isobaric paths indicated. 

 

Fig 11. Solid and porous Hugoniot curves for Wu and Jing [16] 
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Starting with a variation of Equation 9 and applying the notation from Figure 11 gives the 

Equations 37 and 38: the ′ refers to the porous state and H refers to the Hugoniot state. 

 
(37) 
 
(38) 

R is the effective gas constant to be defined later. Equations 39 and 40 come from the 

Rankine-Hugoniot relations and the definition of specific enthalpy for the porous material 

where 1 refers to the Hugoniot elastic limit (HEL) to be discussed later. 

 
(39) 
 
(40) 

The solid material relations are derived the same way as the porous equation with the 

above nomenclature as Equations 41 and 42. 

 
(41) 
 
(42) 

Combining Equations 37 thru 42 yields the result in Equation 43, which is the equation of 

state for a shocked porous material for the prediction of the full range of pressures, also 

shown is the solid Hugoniot in P vs vH space as Equation 44. 

 

(43) 
 
 
(44) 

( )

( )

    for the solid material

   for the porous material

H C C

H C C

Rv v H H
P
Rv v H H
P

- = -

¢ ¢ ¢ ¢- = -

( ) ( )00 1 00 1 1
1 1
2 2

C C C

H

H Pv E

H E P v v P v v

¢ ¢ ¢= +

¢ ¢= + - + +

( )0 0
1
2

C C C

H

H Pv E

H E P v v

= +

= + +

( )
( ) ( ) ( ) ( ) ( )
( )
( )

1 00

0 1

2
0 0

2
0 0

 
2 - 2 - 2 1 2 1

H

H H C C

H

H

RP v V
P

v R v R R v v v R v R

C v v
P

v s v v

¢-
=

¢ ¢+ - + + - + -

-
=
é ù- -ë û



 33 

This equation of state is only valid if the zero-Kelvin isotherms are known for the porous 

and solid Hugoniot states, the HEL parameters of the porous material, and the effective R 

value. 

To determine the cold compression 0K isotherm curve a new variable αc is introduced in 

Equation 45 thru 47 with use of the Carrol-Holt Model.17 

 

(45) 
 
 
 
(46) 
 
 
 
(47) 

The yield strength of the matrix material is Y and the elastic critical pressure of the 

porous material is Pcrit at ambient conditions. It can be noted that the porous material is 

not completely compacted even after the yield strength Y has been reached as seen in the 

domain for αc in Equation 46. As the pressure in the exponential increases by a factor of 2 

greater than the yield strength, αc approaches 1 i.e. compaction. 

The HEL parameters P1 and v1, when not experimentally available, can be assumed to be 

for the porous material approximately equal to Pcrit and v00, respectively.  

The effective R value can be obtained from the assumptions that: (1) when R is a function 

only of P, Cp must be a function of P and the temperature, T or remains constant, and (2) 

that it Cp remains constant, R is independent of T. This is shown in Equations 48 and 49. 
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(48) 
 
 
(49) 

From fluid mechanics the following Equations 50 and 51 are valid, where Ks, KT, ρ, and 

c0 are the isentropic bulk modulus, isothermal bulk modulus, density, and bulk sound 

velocity, respectively. 

 

(50) 
 
 
(51) 

Wu and Jing [16] also show R as a function of P and Γ, which leads to Equation 52. 

 (52) 

Γ is the Grüneisen parameter and is described using the Dugdale-MacDonald18 formula in 

Equation 53 valid for most metallic materials derived from the Born-Mayer potential, 

which is has been found valid for use with alloys, ionic crystals, and rocks given in 

Equations 54 and 55. 
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(54) 
 
 
 
(55) 

A and a are two material constants formed from the solid Hugoniot, δ is the 

compressibility and v0K is the specific volume of the material at the zero isotherm. 

Substitution of Equations 54 and 55 into 53 gives a useful expression for Γ as seen in 

Equation 56. 

 
(56) 

Finally, a more useful equation for Ks is given by Equation 57. 

 (57) 

This effective R value is suitable for both the solid and porous materials; in this model the 

solid R is assumed to be equivalent to the effective R to predict the Hugoniot. The dP / 

dvH term can be found from Equation 44, and thus this method requires only HEL state 

parameters, v0K, a, A, c0, s1, and Y. 

 

3.5. Method of Boshoff-Mostert and Viljoen 
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Boshoff-Mostert & Viljoen19 simplify Wu and Jing’s [16] compaction model by reducing 

the number of parameters required to use the model. This new model incorporates the 

anomalous regime to be defined in a later section, and only requires KT, (∂KT / ∂P)T, and 

v00 to be known. The effective R is obtained from the solid material Hugoniot and the 0K 

isotherm, which will be used for the porous material. Figure 12 shows the solid and 

porous Hugoniot curves as well as the anomalous case. 

 

Figure 12. Porous and solid Hugoniot curves for Viljoen [18].  

 

Setting (v1, P1) as a point on the solid Hugoniot from Figure 12, with Equation 37, gives 

rise to Equation 58. 

 (58) 

From the definition of enthalpy and Equation 3, yields Equation 59 and 60. 
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(60) 

Combining Equations 58 thru 60 yields Equation 61. 
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  (61) 

From Figure 12, v1 is chosen and P1 is determined along an isobaric path from the solid 

state to state 1, where the cold compression specific volume is found on the 0K isotherm. 

Equation 61 can now be used to calculate P1 with the help of the Schetinin’s20 equation to 

describe the cold compression pressure PC1 found in Equation 62. 

 

(62) 
 
 
(63) 
 
 
(64) 

KT0 is the isothermal bulk modulus defined in Equation 63, and χ is a dimensionless 

parameter defined in Equation 64, both at ambient conditions. Slater21 develops a 

Grüneisen equation in terms of v similar to the Dugdale-MacDonald in Equation 53 as 

seen in Equation 65. 

 (65) 
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(66) 

Equation 62 can be written as Equation 67 as: 

 (67) 

Rearrangement of Equation 61 yields a value for the effective R as a function of only P1 

shown in Equation 68. 

 (68) 

Therefore this EOS does not rely on the parameters required for the HEL that Wu and 

Jing require. Instead, an isobaric path from the 0K isotherm to the porous Hugoniot i.e. 

P1 = Pc = PH as seen in Figure 12, where PH is the porous Hugoniot pressure. Equation 68 

can be rewritten to take into account the porous Hugoniot as seen in Equation 69, where 

vH is the porous specific volume. 

 (69) 

 

3.5.1. Comparison of Models 3.1 - 3.5 
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Figure 13 shows the results from the compaction models from subsections 3.1 – 3.5 for 

copper in Us vs up space.  

 

Figure 13. Copper Hugoniot curves for the normal porous case [19]. 

Jing and Viljoen models predict the results which are in good agreement with the Los 

Alamos Scientific Data (LASL)22 data for the normal porous Hugoniot case with α = 

1.41, where Legner and Persson over and under predict, respectively, the LASL data for v 

/ v0 < 0.85, and Persson over predicts the data over v / v0 = 0.88 as seen in Figure 13. 

Figure 14 shows the 5 models from sections 3.1 – 3.5 for α > 2 i.e. the anomalous case 

where the final density is less than the initial density.  
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Figure 14. Copper Hugoniot curves for the anomalous case. [19] 

Jing and Viljoen models are able to predict anomalous behavior without comparative 

experimental data, because the other models make assumptions that are violated for 

anomalous behavior. The slope reversal of Jing and Viljoen is a result of thermal 

expansion and compression alternating as dominant effects, and as porosity increases 

initially the magnitude of reversal increases as well. 

The major difference between Jing and Viljoen is in the way that the effective R is 

determined. Viljoen uses a Shchetinin equation where Jing uses a Born-Mayer Potential. 

Figure 15 shows how the Jing and Viljoen models compare to experimental data taken by 

Trunin.  
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Figure 15. P vs ρ data for copper by Jing and Viljoen compared to experimental data of Trunin [19]. 

Both models reproduce the data well, but the Viljoen model predicts the data better at 

lower pressures for an α = 4. 

 

3.6. Resnyansky and Bourne Compaction Model 

Resnyansky and Bourne23 develop a porous compaction model in an attempt to explain 

abnormal behavior seen in experimental shock tests i.e. anomalous behavior. One 

explanation for this abnormal behavior can be found in trying to apply conventional 

shock physics with respect to porous sand. The constitutive matrix of porous sand is 

made up of air and sand particles. Experiments embed manganin gauges into the sand to 

measure the stresses that the sand sees as it is being compressed and released by shock 

waves. However, this signal is hard to capture because of the sand’s inhomogeneous 

nature. Therefore an experimental setup for controlling the non-equilibrium nature of 

porous sand and a model to describe the process is shown by Resnyansky and Bourne. 

The present model is a two-phase model derived with a homogenization approach which 
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is used in the theory of mixtures, and reduces the two systems interacting through the 

exchange terms to one which is suitable for hydrocode use. 

A set of constitutive parameters are used to describe the mass and volume concentrations. 

Mass entropy is used to describe energy exchange, and special constitutive equations 

from specific experiments are required to close the model. The model is a two-phase 

matrix gas and solid, with separate mechanical properties and compressibility. The 

parameters are density, specific entropy, pressure, temperature, and velocity. Mass 

exchange is possible due to diffusion, but the phase velocities are in equilibrium. 

The equation of state for the gaseous phase and the solid phase in internal energy – 

density space is in Equation 70 and 71, respectively. 

 

(70) 
 
 
(71) 

c0, cv, S0, subscripts 0, a, and s are the sound speed, specific heat, entropy, solid phase at 

ambient conditions, air, and solid, respectively. β, α0, γ, are material constants determined 

from experiment, and ej0 is an energy adjustment for the phases under normal conditions. 

With a uniform hydrostatic assumption the strain equation can be reduced to those found 

in Equations 72. 
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The model also has a non-equilibrium variable θ which acts as a resistance equalizer, 

when the resistance is high in a compaction zone, θ < θC (compaction concentration), and 

when the resistance is low in the low compaction zone θC < θ < θi (initial concentration).  

The two-phase model described here works well for porous materials and has the added 

advantage of a non-convex constitutive equation of state that is easily programmable into 

common hydrocodes. The model has been adapted to fit non-ductile materials such as 

sand through critical crushing pressure assumptions. One major drawback is that 

independent experiments are needed for designing constitutive equations, and this model 

hasn’t been tested on the low particle and shock velocity regime.  

 

3.7. P-λ Compaction Model 

The model suggested by Grady & Winfree24 is called the P-λ model. This is a 

computational model for compacting heterogeneous geological materials with an 

emphasis on gas filled voids within the constitutive model. There are two physical states: 

uncompacted or fully compacted. Partially compacted is a mixture of uncompacted and 

fully compacted material. In the uncompacted state, the stiffer material will support the 

material until yielding. In the fully compacted state the components are considered to be 

at local pressure equilibrium and thus both yield equally as a fusion of the components.  

Figure 16 shows how a material transitions from uncompacted to fully compact as λ 

evolves over the 0 to 1 interval in P-v space. The constant strain response of the material 

occurs with increasing pressure, and the iso-pressure response occurs if the material 

never fully compacts. Unlike the P-α curve where the pore collapse is uniform 
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throughout the material, the P-λ curve assumes pores will collapse within the mixture and 

eventually form a conglomerate of all the components heterogeneously. 

 

 

Figure 16. Pressure-volume space illustrating the P-λ curve [24]. 

 

In order to fully describe the compaction process the elastic properties of both the fully 

crushed and uncrushed materials are required. The compaction mass fraction only 

advances if the P > 0 and P = Pmax. The mass fraction of crushed material is defined in 

Equation 73,  

 
(73) 

Pc represents the cellular strength of the material based on component materials and 

cellular construction as seen in Equation 74 for polyurethane foam; n represents a 

material constant dependent upon solid and porous densities and is determined 

empirically from experimental data as seen in Equation 75. 
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(74) 
 

(75) 

The 0 refers to porous material, and s refers to the solid material. For polyurethane foam, 

the above equations are valid for a specific range of densities 10-50 lb/ft3.  

Figure 17 shows how the P-λ model predicts the mean stress compaction seen as a dotted 

line up to complete compaction when the density of the foam reaches its solid density. 

The foam is initially uncrushed until it begins to partially crush and release the air out of 

the voids, and then the material reaches the mean stress compaction curve where it then 

rides along until complete compaction. 

 

 

 

Figure. 17. Compaction curves with P-λ model for 14 & 28 lb/ft3 [24]. 
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This model has been studied at by Borg et al. [10]; however, for the purposes of this 

research, this model will not be used. 

 

3.8. Wunnemann, Collins, and Melosh Compaction model 

Wunnemann, et. al.25 discuss a new EOS called the ε-α model, which requires only four 

input parameters each with physical meaning. The model can handle static testing to 

highly dynamic impact experiments. The model accounts for pore collapse like the P-λ 

model; however the collapse is a function of volumetric strain rather than pressure. The 

porous material model contains a solid and void-space component with porosity φ 

defined by Equation 75. 

 (76) 

V is volume, VS is the solid component volume, and VV is the volume of void space. A 

porosity of 0 represents no void space and a porosity of 1 represents no solid component 

as seen in Equation 76. 

 (77) 

ρ is the bulk density and ρS is the density of the solid component. For this model the term 

α will determine the distension of the powder as defined in Equation 77. 

 (78) 

The advantage to using this scheme is that a basic equation of state can be used without 

any modification, but when used in a numerical scheme the forward time distension αt +1 
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must be known in order to determine Pt+1. One solution is to iterate in a subroutine, but a 

better solution is to calculate pressure from a state variable that is known at this step i.e. 

volumetric strain εV in Equation 79. 

 (79) 

V’ is the updated volume and V0 is the initial volume, and compression is this case is 

considered to be negative in this formulation. If all the voids in the powder approach 0, 

then the distention and volumetric strain can be related as in Equation 80. 

 (80) 

α0 is the initial distension before compaction. However, compressing a porous material 

results in simultaneous compaction of pore space and compression of the matrix, which 

will be accounted for using a compaction rate parameter κ ≤ 1. There are three 

compaction regimes to be accounted for: elastic, exponential, and power-law as seen in 

Figure 18. 
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Figure 18. Schematic illustration of the ε-alpha porous compaction model showing distension α as a function 

of the volumetric strain εV. Three compaction regimes are shown: elastic, exponential, and power-law. [25] 

The elastic regime is defined by the solid line in Figure 18, and smoothly transitions to 

the exponential regime in εV until εe (elastic-plastic transition) is achieved. At this point 

the material as begun to crush out the voids in an exponential fashion until εx (the 

threshold strain), where the material may either follow the power law or the exponential 

law depending on the following. Firstly, for the power law to become a reasonable 

assumption the slope of the compaction curve should be less steep than for the 

exponential compaction regime, and therefore be harder to crush out pores, secondly, the 

transition from one regime to the next should be smooth and continuous, and finally the 

compaction curve should smoothly approach the distension line α =1. The elastic regime 

and exponential regime are defined in Equation 81. 

 (81) 

The power law is defined in Equation 82 where εc is the volumetric strain at which all 

pore space is crushed out. 

 (82) 

In order for the power function regime to smoothly meet the exponential function regime 

the derivatives must be equal. Therefore setting f’(εV) = g’(εV) gives Equation 83. 
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 (83) 

If the material never completely crushes before the plastic strain is achieved then the 

material relaxes back to α0, however this usually isn’t the case for large scale dynamic 

shock tests. In this case the irreversible compression doesn’t release back to α0, but on a 

horizontal line back to 0 strain as seen in Figure 18 under partial release from 

compaction. This model therefore has 1 initial state variable and 3 material parameters: 

α0, εe, εX, and κ. However, one major drawback to this model is that these parameters 

have to be fitted to the data for accuracy as seen in Figure 19.  

 

Figure 19. Axial load versus penetration depth for a static compaction test for porous silica. [25] 

The vertical dashed line represents the best fit for the εX value, i.e. the exponential to 

power law transition. The dry sand appears to be well modeled using this approach 

except for the experimental data where the “?” occurs. This slight rise in the curve may 

be a result of friction with the casing during compaction, which was not considered in the 

model. 

( )

( )
0

0

12
X e

X ec X
e
e

k e e

k e e

ae e
ka

-

-

-
= +



 50 

The model also holds up well against more dynamic experiments as seen in Figure 20. 

The parameters for εX, and κ were interpolated until the best result between the 5 data 

points could be reached for the porous sample. The non-porous sample fits the data 

extremely well and seems have a smooth curvature.  

 

Figure 20. Calculated Hugoniot curves for porous and nonporous aluminum in comparison to experimental 

results [25].  

This model further takes on crater growth and gravitational terms that are irrelevant to the 

realm of small scale porous dynamic shock impact tests. This model would be a good 

choice for future research into porous compaction of silica, but is not going to be used in 

this research. 

 

3.9. Computational Alpha Pressure (CAP) Compaction Model 

The CAP model was originally formulated by Drucker and Prager26 for geological 

compaction, and has recently been adopted by Chtourou et al27 to simulate the cold die 

compaction of tungsten carbide powder. There are four assumptions this model 

implements. Firstly, the powder is not treated microscopically as spheres or irregular 
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shapes interacting with their surroundings but rather as a continuum that undergoes large 

elastic-plastic deformations. Thus the part is treated macroscopically. This is justified by 

the fact that the volume of the interstitial voids is much smaller than the volume of the 

total part. Secondly, the compaction tools are moving so slowly that the process is 

deemed isothermal and inviscid.  The third assumption is that globally the part compacts 

isotropically, i.e. physical properties are independent of direction. Lastly, the compaction 

occurs everywhere uniformly, meaning there is no shock regime causing any jump 

conditions. 

This model could be used as an initial starting point for the simulation of dynamic tests to 

see how well the static assumptions here hold in the world of dynamic events. For this 

research this model will not be pursued. 

 

3.10. Summary 

There are two equations of state of interest in this research: the Mie-Grüneisen and the 

Mie-Grüneisen with a P-α modification. The P-α has the ability to model the porous 

material, but ties smoothly and continuously into the Mie-Grüneisen equation of state.  

There have been numerous attempts to model the dynamic compaction of porous media, 

and these models have been shown to work well for a variety of specific materials with 

specific initial densities. Future work can implement these models, or form new models 

from the limitations of any these models presented in the previous subsections. 

The dynamic experiments on porous amorphous Degussa Sipernat 50 µm silica powder 

will be used to verify the results of the two hydrocodes of interest to be discussed in the 

next section. The use of the Mie-Grüneisen and P-α equations of state along side the 
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respective experimental data for three initial specific densities and various particle 

velocities will determine whether or not the unverified hydrocode found in Wilkins [1]  

can replicate to close agreement the highly regarded hydrocode from Sandia National 

Laboratories. 
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4. Numerical Hydrocode Schemes for KO and CTH 

The two codes of interest are KO and CTH. Each code has the capability to implement 

the various equations of state presented in sections 2 and 3. These codes are finite volume 

fundamental physics codes commonly referred to as hydrocodes in that they conserve 

mass, momentum and energy.  They can resolve multi-material, large plastic deformation 

processes in a ballistic strain regime.  CTH, which was developed and is maintained by 

Sandia National Laboratory, is classified export controlled which means it can not be 

distributed to foreign nationals and some aspects of the codes inter-workings are subject 

to DOD review before release. CTH evolved from a one dimensional shock physics code 

named CHART-D (Combined Hydro and Radiation Transport Diffusion) written in the 

1960s.  As such CTH is now over 1 million lines of code and is difficult to modify and 

compile.  However CTH is recognized within the shock physics community as the 

standard hydrocode by which all others are compared.  Because of the export control 

classification issues and difficulties with making modifications, a new hydrocode named 

KO, which was written into the F77 Fortran compiler and based on the numerical scheme 

presented in Wilkins [1], was developed at Marquette University. Two equations of state 

have been programmed into KO in order to directly compare the two programs against 

experimental data and ultimately determine if KO performs as well as CTH. Below is a 

brief overview of the numerical scheme for KO and CTH. 

 

4.1. One Dimensional LaGrangian Hydrocode [KO] 

KO is a one dimensional LaGrangian hydrocode, meaning that the frame of reference is 

on and moving with the flow. The code follows a scheme that simultaneously solves the 
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equations of mass, momentum, and energy (Equations 84-86) with a LaGrangian 

reference point. 

 

(84) 
 
 
 
(85) 
 
 
 
(86) 

U is the velocity vector, s is the stress tensor, g is gravity, W is the work, and Φ is the 

thermal diffusion. D / Dt is the total derivative, meaning that the time rate of change is 

reported as one moves with the substance defined as ∂ / ∂t + . In order to solve 

these equations there is a requirement of a stress-strain relationship and an equation of 

state to relate two thermodynamic properties together.  

 

4.1.1. Von Neumann finite difference scheme 

KO is numerically a Von Neumann28 finite difference scheme in which, a material is 

divided into a LaGrangian grid that moves with the flow. The mesh is a staggered in 

position and in time. The space between consecutive grid lines is referred to as a zone, 

and this is where the thermodynamic parameters are evaluated. Position and its respective 

derivatives are evaluated at the grid intersections called node points. A cell is defined by 

two consecutive zones and the node between them as seen in Figure 21.  
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Figure 21. Discritization Schematic of Time-Space for La Grangian Node Grid 

 
Space is denoted with a subscript j, and time is denoted with a superscript n. The zones 

are located at the odd whole numbers, and the nodes are located at the even whole 

numbers in the numerical scheme. For example, would be the local pressure at the 

current time and at the forward zone. The mesh is closed by the boundary conditions that 

are applied through the use of ghost cells located at each end. 

The Von Neumann finite difference equations are second order in terms of the Taylor 

series expansion as seen in Equations 87-89. 

 

 

(87) 
 
 
(88) 
 
 
(89) 

 

 
4.1.2. Time centering 

From Figure 21 the nodes and the zones have separate counting schemes. The zones 

which carry the thermodynamic properties advance in time from tn to tn+2 with Δtn+1 = 

(tn+2 - tn), and the nodes which carry the velocity and position advance in time from tn-1 to 
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 Δtn =½ (Δtn+1 - Δtn-1). The next section will show how to circumvent this time centering 

if it is disrupted or increased too much due to instability 

 

4.1.3. Artificial viscosity 

A finite difference scheme is inherently unstable to a certain extent due to the fact that the 

equations are truncated to a second order as seen in Equations 87-89. This leaves 

numerical round off error that can crash a program. A Von Neumann scheme therefore, 

utilizes an artificial viscosity term, q as derived by Wilkins et al29 and given in Equation 

90. 

 (90) 

Here ρ is the local density, ds / dt is the strain rate in the direction of acceleration, q = 0 

when ds / dt ≥ 0, a is the local sound speed given by where P is the local pressure, L 

is a characteristic length, C0 ~ 2 and CL ~ 1, which determine the number of grid spacings 

over which the shock will spread. The artificial viscosity, q, is designed to avoid 

geometric convergence effects or places where the program can not distinguish where the 

shock is between consecutive nodes (large changes in Δtn+1). This artificial viscosity is 

not to be confused with Newtonian fluid viscosity. The purpose of q is to numerically 

spread the shock front over the minimum number of grid spacings while damping the 

oscillations behind the shock front caused by the numerical method itself. The C0 & CL 

are listed with a value assigned for each; however for a particular application these values 

can be tuned for ideal damping and numerical stability.  
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4.1.4. Stress-Strain relationship  

The objective of material models is to apply theory to practical problems with idealized 

simplifications to real observations. The simplest model is to assume perfectly elastic-

perfectly plastic. Where the elastic regime is governed by Hooke’s Law in incremental 

terms as seen in Equation 91 

 (91) 

Here the incremental stress equals the incremental strain multiplied by Young’s Modulus. 

This is done so that current stress is not dependant on original material configuration. The 

stress in a material consists of two components: a uniform hydrostatic pressure plus a 

resistance to shear distortion. The elastic and plastic transition is governed by a Von 

Mises Yield condition. 

 

4.1.5.  Thermodynamic pressure relationship  

The general form of the thermodynamic pressure relationship can be seen in Equation 92, 

where the pressure is the sum of the hydrostatic and thermal pressures. 

 (92) 

η is the ratio ρ / ρ0, local density / initial solid density, A(η) is the hydrostatic pressure 

component, and B(η) is the thermal pressure component.  

The pressure relationships in this research are the Mie-Grüneisen and P-α equations of 

state. The P-α is only needed for porous compaction. These were derived in sections 2.1 

and 2.3, respectively. The finite difference numerical derivation for the Mie-Grüneisen 
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equation of state can be found in Wilkins [1] with the algebraic form shown in Equation 

93. 

 
 

(93) 

x is a unitless number in terms of relative volume defined as x = 1- v / v0, ε and ε0 are the 

specific internal energy, and initial specific internal energy, respectively, and Ε is the 

specific energy per original specific volume defined as ε / v0. Each “k” parameter is 

defined in Equations 94-96. 

 

(94) 
 
(95) 
 
(96) 

The P-α equation of state can be taken from section 2.3 for each of the three continuous 

Hugoniot curve regions. The pressure for elastic compaction can be obtained from 

Equation 10 with a smooth transition from the elastic line to the compaction curve with 

the following constraints can be seen in Equation 97. 

 (97) 

The pressure for compaction region with the proper constraints obtained from Equation 

11 is given in Equation 98.  
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 (98) 

When α ≤ 1 the curve smoothly joins the Mie-Grüneisen curve with the governing 

pressure from Equation 6. 

 

4.2. One - Three Dimensional Eulerian Hydrocode [CTH] 

CTH also numerically solves the partial differential describing the conservation of mass, 

momentum, and energy from. These equations in an Eulerian reference frame are 

presented in Equations 99-101. 

 

(99) 
 
 
 
(100) 
 
 
 
(101) 
 

ρ is the mass density, U is the velocity vector, s is the stress tensor, q is the artificial 

viscosity, P is the cell pressure, ε is the specific energy, F is the applied body force, and T 

is the energy source term. It solves these equations in a structured Eulerian mesh fixed in 

space and uses constitutive relations and equations of state to close the coupled system of 

equations. 
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4.2.1. Solution sequence  

CTH uses a four step, Eulerian-LaGrangian, explicit solution scheme in order to 

accommodate large material deformation.  The first step, referred to as the LaGrangian 

step, advances the momentum and energy in the mesh through a single time step 

assuming that the mesh moves with the materials.  The second step, referred to as the re-

map or Eulerian step, re-maps the distorted cell values back onto the original Eulerian 

mesh. The third step is the half index shifted momenta step where the thermodynamic 

properties are stored in an imaginary staggered mesh while the second step is finishing. 

The final step is the data modification step where the user can discard any material that 

for example may be too small for significance in a fragmentation analysis. A more 

detailed look into this procedure can be found in the CTH manual30. 
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5. Static Compaction Experiment  

In order to understand the dynamics of a material, the static properties must be addressed 

first. When a powder crushes in a dynamic experiment, there are shocks that traverse the 

powder and cause compaction and crushing. In a static compaction experiment, the 

powder compacts and crushes due to a monotonically increased loading under an 

isothermal condition. Compaction in this case is defined as removing the air that is 

surrounding the powder matrix. Crushing is defined as fracturing the individual grains 

within the matrix. Degussa Sipernat 50 µm powder will first be analyzed as 

uncompacted, and then compacted wafers will be made from a static compaction 

experiment. The question in a static compaction experiment is whether or not the grains 

fracture after the sample wafer is made. 

 

5.1. Degussa Sipernat 50 µm Powder 

Light microscopy and SEM were used to determine the particle size distribution of the 

uncrushed silica powder. Specimens were prepared by distributing some powder on a 

piece of double sided conductive tape attached to a glass slide and then shaking off the 

excess. This powder sample was then examined using an Olympus PME3 metallograph. 

Figure 22 (a) shows the powder at X100 under both light and scanning electron 

microscopy (SEM). 
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(a)                                   (b) 

Figure 22. (a) Light microscope and (b) SEM photos for the uncrushed powder at X 100. 

The lightest white spots on the figure are the tape behind the powder on the glass slide 

and the blurry gray circles are the powder particles. The sample was then examined with 

a JEOL JSM35 scanning electron microscope operated at 25 kV.  Figure 22 (b) is the 

same picture scanned with the SEM at X100. Clearly the SEM has a much higher depth 

of field, and shows the powder sizes to a greater clarity than the light microscope. 

Therefore, it was clear that SEM pictures were going to be required in order to capture all 

of the details of the powder. Figure 23 (a, b, c, and d) shows the SEM photos of the silica 

powder at various magnifications.  

       
(a)      (b) 
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(c)      (d) 

Figure 23. SEM photo of uncrushed silica Powder at (a) 50 x, (b) 100 x, (c) 200 x, (d) 500 x 

With respect to the individual grains, the powder grains of Figure 23 (a, b, c, and d) show 

the expected particle size distribution of about 4 – 150 µm for the Degussa manufacturer. 

Figure 23 (a) shows from a visual inspection with an incremented ruler that the average 

particle size is around 60 µm. 

 

5.2. Experimental Procedure for Making Wafers 

Each wafer was formed by compacting the powder in a Buehler hydraulic press, which 

has a maximum pressure ~ 15,500 psi, in a 1 in diameter cylinder. A schematic diagram 

of the cylindrical die is presented in Figure 24.  

 

  

       60 µm 
       
     100µm 
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Figure 24. Schematic of cylindrical die used for static compaction 

The steel cylinders (driver and backing) were polished only on the face where the powder 

would come into contact. First the cylinders were ground down using a LECO 

 BG-32 Grinder with an 80 grit silicon carbide belt and then a 120 grit silicon carbide 

belt. Then using a Buehler Handimet Grinder with a 240 grit pad, the cylinders were hand 

ground turning 90° on every stroke. Each was then moved to a 320 grit pad and the 

process was repeated. Finally, each cylinder was polished with 1 µm Al2O3 and then with 

0.05 µm Al2O3 until mirror like finish using Buehler polishing wheel. 

The silica powder was weighed using a Mettler Toledo AG204 digital readout scale with 

210 g maximum weight and 0.1 mg accuracy. After placing a known amount of silica 

into the steel annulus and assembling as shown in the schematic in Figure 24, the 

assembly was placed in the hydraulic press and loaded. The first sample was created by 

crushing the powder to the highest pressure that could be achieved, which was 11,000 

psi. After removing the sample from the apparatus the height of the wafer was measured 

using a caliper. The density is determined using Equation 102. 

 (102) 

The rest of the samples were prepared by estimating the pressure which was required to 

compress the samples to the approximate height with respect to the first sample to 

achieve 0.412 g/cc and 0.375 g/cc sample wafers. The wafers were then fractured in half 

perpendicular to the axial axis of symmetry, and one side was sputter coated to make it 

conductive for scanning electron microscopy (SEM). These sputter coated surfaces are 
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shown as the darker surface of each of Figures 25 (a, b, and c) discussed in the next 

section. 

              

                        (a)                                                                                               (b) 

 

(c) 
Figure 25. Macroscopic views of fractured sputter coated and non-sputter coated halves of sample surfaces 

with top/bottom ruler reading in [mm]/[in]: (a) 0.375 g/cc (b) 0.412 g/cc (c) 0.700 g/cc 

 

5.3. Digital Macroscopic, Light Microscopic, and SEM Photos 

For SEM the fracture surfaces of the non-conductive silica wafers were sputter coated 

using a Technix Hummer I sputter coater operated at 80 millitor with a Au-Pd target. The 

samples were placed into the vacuum chamber of the coater, which was then evacuated. 

Once 50 millitor or less is reached, sputtering was started at 900 volts and 80 millitor. 

This puts about 150 µm coating of Au-Pd in two minutes. After all the samples were 

coated, they were placed on a carbon disc and then electrically connected to it with 
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carbon paint and conductive double sided tape to complete the circuit. Each sample was 

analyzed at 50, 100, 200, and 500 x, respectively, as seen Figures 26-28. 

 

          
(a)      (b) 

          
(c)      (d) 

Figure 26. SEM photo of 0.375 g/cc wafer at (a) 50 x, (b) 100 x, (c) 200 x, (d) 500 x 
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(c)      (d) 

Figure 27. SEM photo of 0.412 g/cc wafer at (a) 50 x, (b) 100 x, (c) 200 x, (d) 500 x 
 
 

          
(a)      (b) 

 

          
(c)      (d) 

Figure 28. SEM photo of 0.700 g/cc wafer at (a) 50 x, (b) 100 x, (c) 200 x, (d) 500 x 
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Any bright spots that appear in the photos are a result of a “charging effect,” locally 

electrons are building up due to the high electrical resistance in the localized material. 

These spots were avoided as much as possible. Before taking any pictures the 

microstructure of the sample was found by briefly scanning surface using the SEM to 

determine if the surface was free of the “charging effect” as much as possible. 

Consistency between the samples was validated by picking a low charging surface on the 

cross-section near the center for all the samples. 

Each wafer was made from a powder sample taken from near the top of the container. 

Larger particles tend to settle at the top and smaller particles tend to settle at the bottom 

of a pile that has been handled and shaken vigorously. Without the use of a sieve, the 

particle size distribution can not be controlled. Therefore the SEM pictures above show a 

wide particle size distribution. 

From Figures 26, 27, and 28 one can conclude, when comparing the wafers of different 

densities to each other at the same magnification, that the surfaces have about the same 

roughness, and that the particle sizes remained about the same. This would indicate that 

the samples compacted together as much as possible to relieve the air trapped between 

the particles. Some of the particles may have fractured by way of cleaving, especially for 

the 0.7 g/cc case. In that case the wafer was made with the intention of determining the 

maximum amount of pressure that the powder could withstand (11,000 psi on a 1” 

diameter cylinder). To further densify the wafer would require elevated temperatures and 

sintering. The particles would be limited by the constitutive matrix voids that each of the 

particles of various sizes could be arranged into, but by heating the particles and welding 
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them together eventually it would become a solid. One way to determine if there is any 

internal porosity still remaining in between in the individual particles is to compare the 

surface area of the powder to the surface of the agglomerated particles within the wafer 

matrix. Any fusion of powder particles will lower the surface area of the agglomerated 

particle in the wafer matrix. This measurement can be accomplished by using a BET 

technique described by the procedure below. 

 

5.4.  Single Point BET Experimental Procedure and Results 

BET stands for Brunauer, Emmitt, and Teller. These three scientists developed a way to 

calculate the surface area of a powder by “physisorption” of nitrogen to the powder 

surface. The assumption is that nitrogen will physisorb to the surface of the material of 

interest, forming a mono-layer of nitrogen which completely covers the surface area.  By 

detecting the amount of nitrogen gained or lost to the physisorb process a measure of the 

material surface area can be obtained.  The apparatus at Marquette University is a 

Quantachrome3000 BET. The following experimental procedure is for single point BET. 

The BET apparatus has to be calibrated to begin. A known powder sample called a 

“reference sample” of known surface area is weighed and put into a Pyrex u-shaped tube, 

which is then is properly attached to the BET apparatus. Non-reacting and reacting gases 

are then fed through the system at a known flow ratio. In this case, a He to N2 gas flow 

ratio of 0.3 is fed through the system and outgases the sample and internal parts of the 

BET apparatus for a couple of days. The system reaches a steady-state when the counter, 

which integrates the loss or gain of nitrogen flowing in the stream to give a unitless 

count, on the front of the apparatus stops counting. Attenuation for the voltage on the 
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bridge is picked in order to stay within the limit of counts that the machine can handle. A 

rule of thumb is about 32-64. The counter on the apparatus is reset, the adsorption button 

is pressed, and then voltage on the bridge is tuned to zero. Once the system is at steady-

state the sample in the Pyrex tube is then submerged in liquid nitrogen. The liquid 

nitrogen freezes the gaseous nitrogen flowing through the tube and “adsorbs” to the entire 

surface of the powder. A detector, which is located down the line from the sample, 

constantly measures the amount of gaseous nitrogen flowing through the system. There is 

an integrating counter that starts counting when the difference in the voltage reaches an 

arbitrarily set threshold. When the counter stops counting, this number is recorded, the 

counter is reset, the “desorption” button is pressed, and then bridge is reset to zero. The 

liquid nitrogen is then removed, and the tube is submerged in room temperature water. 

The nitrogen gas that froze to the sample surface is then released back into the main 

stream and the detector beings the integration process. Once the counter stops, this 

number is recorded. This procedure is repeated until the attenuation is proper between the 

adsorption and desorption as to keep the experimental run time within the maximum 

counter limits and in a reasonable wall clock time of around 5-10 minutes if possible. 

To calibrate this sample, the counter is reset, the “desorption” button is pressed, the 

bridge is set to zero, and nitrogen gas is pulled form the system through a permeable 

setup with a gas syringe. The volume of the pulled nitrogen gas is recorded and then is 

fed back into the system with the syringe. The detector then integrates the known amount 

of nitrogen and the counter value is recorded. This procedure is repeated until the amount 

of gas pulled from the system gives a count close to the desorption count from the 

sample. Quantachrome provides software that requires the count inputs from the 
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adsorption, desorption, and calibrant, as well as the mass of the sample and volume of the 

calibrant.  

If the BET machine gives the desired results from the reference material, then the above 

procedure is repeated for the powder sample of interest. As an optional outgassing 

procedure, the sample can be baked at an elevated temperature for an extended period of 

time while being fed by the steady-state stream. This can be helpful if the sample is 

hydrophilic such as in this case with silica.  

There are two sets of results for the same samples: one from the Marquette University 

and the other from samples sent to the Quantachrome Corporation. BET measurements 

on the Degussa 50 µm silica powder and the 3 wafers plus another wafer that was used in 

experiment during a dynamic test at Cambridge University labeled “0.7 EXP” can be 

seen in Table 1. 

Table 1. BET surface area results for Quantachrome and Marquette University for the silica powder 

 
Specific Surface Area m2/g 

Quantachrome Marquette University Degussa 
Outgassing Temp 400 °C 3 hrs 25 °C 3 hrs 212 °C 3 hrs 25 °C 3 hrs ASTM 

BET technique single multi single multi single single 
Powder 410 420 403 413 407 415 450 

0.7 [g/cc] 417 429 392 402 431 443 - 
0.7 EXP [g/cc] 439 452 428 440 456 409 - 

0.412 [g/cc] 413 423 390 399 472 399 - 
0.375 [g/cc] 412 424 403 412 484 445 - 

Alumina Reference 
* STANDARD - - 265* - - 161 - 

The Marquette University surface area measurement for the Alumina Reference was 

about 100 m2/g lower than the reference standard. This was fairly consistent with the 

silica powder and wafers in comparison to the Degussa and Quantachrome surface area 
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measurements. Therefore each of the Marquette University silica sample surface area 

measurements were averaged over three trials and then were adjusted by 100 m2/g. 

For the most part the dependency of density on the surface area of porous silica isn’t 

widely analyzed. The results of Table 1 indicate that the surface area of the silica wafers 

and the uncrushed powder are unaffected by the outgassing temperature across all wafer 

densities. Furthermore, the surface area of the uncrushed powder is relatively the same as 

the surface area of the each compacted wafer. If the silica particles were welding together 

by atomically bonding, then the surface area would be decreasing per unit weight. 

Therefore, the results indicate that particles are not bonding together.  
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6. Dynamic Compaction Experiment 

In order to computationally analyze the dynamic compaction characteristics of porous 

amorphous silica powder, the dynamics of the solid materials must be well understood. 

The objective of this chapter is to characterize the ability of hydrocodes to predict the 

dynamic compaction of porous powder. As a first step, experimental results are used to 

verify the equations of state utilized in the dynamic simulation of the materials of 

interest. The approach taken in this research is to first verify that both the CTH and KO 

hydrocodes yield accurate results for the dynamic behavior of a solid material impacting 

a solid material utilizing the Mie-Grüneisen equation of state for well characterized 

materials.  Next the CTH and KO hydrocodes, utilizing the P-α porous equation of state, 

was used to simulate the Hugoniot state of a well characterized solid material impacting a 

well characterized porous material.  Finally the hydrocodes were used to simulate the 

dynamic compaction of porous silica, which has not been well characterized, being 

impacted by PMMA, a well characterized solid material.  By progressing toward the 

objective in this multi stepped approach, confidence is achieved in the computational 

codes and the methodology. As a starting point for solid on solid dynamics, a Cu on Cu 

flyer-plate experiment form Cambridge University was used to validate the Mie-

Grüneisen equation of state in KO and CTH. Further validation for a solid on solid 

experiment, Cu on PMMA, was used to show the Mie-Grüneisen equation of state 

agreement with experimental data, and each was used to demonstrate material impedance 

mismatch and its role in experimental results.  

In terms of solid on porous experiments, the first was used to re-examine Herrmann’s 

seminal P-α paper on the dynamic compaction of a porous ductile material [11]. In this 
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experiment Fe impacts porous Fe that is embedded in a solid Fe target, with each having 

the same bulk Fe properties. This section was used to demonstrate how well the P-α 

equation of state computationally simulates the experimental data between CTH and KO. 

This was accomplished by recreating the P-up figure from Herrmann’s P-α paper using 

KO and CTH [11].   

Finally after KO and CTH have been validated using the P-α model against a porous 

ductile material, each was then demonstrate how well the P-α model simulates the 

dynamic compaction of a porous brittle material. Published experiments from Cambridge 

University involving a PMMA flyer impacting a PMMA target with silica powder 

embedded between the PMMA plates at various initial flyer velocities was used to 

validate the simulations. The computational results are shown with experimental data in 

pressure-time traces, P-t. These figures make three comparisons to the respective 

experimental data.  The P-α equation of state between KO and CTH, the Mie-Grüneisen 

equation of state between KO and CTH, and the P-α and Mie-Grüneisen equation of 

states against each other. Furthermore, a pressure-specific volume Hugoniot plot, P-v, for 

each initial compacted powder density was used to compare the experimental, analytical, 

and computational data.  

 

6.1. Solid on Solid Compaction – Copper on Copper  

The first comparison will implement the Mie-Grüneisen equation of state in a solid on 

solid copper experiment from Cambridge University with the setup shown in Figures 29 

(a) and (b).  
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                                                 (a)                                                                                       (b) 

Figure 29. (a) Schematic and (b) Photo of copper on copper flyer plate experimental setup from Cambridge 

University.  

The copper flyer plate is initially moving at 1.037 km/s and strikes the copper target with 

the front gage sandwiched between two pieces of copper. The back gage is located 

between the back copper plate and the PMMA backing with all dimensions in 

millimeters. The gauges are held in place and the copper and PMMA are assembled with 

a thin layer of epoxy.  Table 2 shows the Mie-Grüneisen constants used in order to 

simulate the experiment. 

Table 2. Mie-Grüneisen constants for CTH and KO 

KO and CTH input values PMMA Cu 
Density, ρ0                            [g/cc] 1.182 8.93 
Specific Density, v                [cc/g] 0.846 0.112 
Slope, s 1.23 1.489 
Bulk sound speed, c0            [cm/µs] 0.273 0.394 
Grüneisen parameter, Γ0 0.85 1.99 
k1  = ρ0 c02                             [Mbar] 8.809E-02 1.386257 
k2  = k1 (2 s - Γ0  / 2)                     [Mbar] 1.793E-01 2.748949 
k3  = k1 s (3 s - Γ0)                 [Mbar]    3.077E-01 5.112868 
Poisson ratio, µ  0.3 0.343 
Fracture Pressure, Pfrac       [Mbar] 1.00E-03 2.10E-03 
Yield Strength, Y                  [Mbar] 6.80E-05 3.33E-04 
Shear Modulus, G                 [Mbar] 2.50E-02 4.60E-01 
Specific Heat, cv                   [ergs/g/eV] 1.00E+10 4.56E+10 
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The constants in Table 2 are written in separate input files so that each respective 

compiler can locate these constants and apply them accordingly. With these constants and 

the dimensions for the material thicknesses and gage locations from Figure 29 (a), all the 

information necessary to run a simulation is known for the Mie-Grüneisen equation of 

state. The results of this simulation can be seen in Figure 30 in pressure vs. time, P-t, 

space.  The legend nomenclature indicates the hydrocode and the equation of state 

utilized in the numerical simulation.  Thus CTH MG represents the results from the CTH 

hydrocode utilizing the Mie-Grüneisen equation of state. 

  

 

Figure 30. Cu on Cu P-t results for CTH and KO against experimental data. 

Figure 30 shows the front gage and the back gage data simultaneously with the time 

frame adjusted so that the data appears in real time, i.e. the first square wave at ~0.4 µs is 

the front gage data, and the second wave located at ~2.5 µs is the back gage data. In a 

dynamic compaction experiment the flyer plate strikes the target at time zero.  This initial 

impact launches a step wave pressure rise in both the target and flyer.  When this step 
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wave reaches the rear surface of the flyer the pressure is released back to zero.  This 

release wave traverses back through the flyer and into the target.  Thus a square wave is 

formed which traverses through the target.  As the square wave passes by the front gauge 

a pressure versus time trace is recorded.   The initial peak pressure and rise time for the 

shock traversing the front gage is about 22 GPa and 0.4 µs with fair agreement by both 

CTH and KO to experimental data. This square wave then passes through the remainder 

of the copper and is recorded by the back gauge.  Due to the impedance mismatch 

between the copper and PMMA, PMMA having a lower impedance than copper, the peak 

pressure is reduced.  The back gage shows a peak pressure around 5 GPa, and a rise time 

about 2.5 µs with fair agreement with CTH and KO. Also KO has a drop in pressure to 0 

dropping gradually from 4.8 – 6 µs.  

The fact that KO deviates from CTH on the back gage around 4.8 µs is not surprising, 

since CTH can account for spalling in a material where KO cannot. Spalling from 

Wilkins [1] is defined as “fracture that occurs at conditions of high hydrostatic tension 

without an initial crack.” This can happen when two rarefaction waves, reflected waves 

from a free surface, hit each other and cause a local tension in the material. If this local 

tension exceeds the yield strength of the material, spalling will occur. This is also seen 

after the release wave on the front gage at 4.8 µs, where the pressure goes into tension for 

KO, but remains at 0 for CTH. KO has no fracture constitutive relations, and therefore 

the local tension can never yield to the point of fracture. However, CTH has fracture 

constitutive relations that can model the spalling with agreement to the experimental data 

for the front and back gages.   
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Spalling can be avoided at the gage locations in the time that is relevant to the experiment 

by lengthening the experimental setup. Figure 30 shows how CTH would calculate the 

pressure if spalling were taken out of the simulation marked as “CTH – Back no Spall.” 

For this case, KO and CTH predict the back gage pressure drop identically.  

The experimental data shows how a signal can fluctuate when there is a high impedance 

mismatch between the manganin gages and the Cu. When the shock passes by two 

materials that have a high impendence mismatch, i.e. large differences in material 

properties, the shock will send out reflected waves that bounce back and forth in the 

thinner material and experimentally show a “ringing” effect. Since manganin is the most 

accepted material for strain gages as shown from Bourne and Rosenberg,31, 32 the flyer 

plate and target must have approximately the same impedance as the manganin in order 

to avoid the “ringing” effect. One such material is PMMA, or Lucite, which is a clear 

plastic material much like Plexiglas. The ringing effect can be greatly reduced by 

equating the impedance of the embedding material with the gage material, as is seen in 

the next section. 

 

6.2. Solid on Solid Compaction – Copper on PMMA 

A variation of the previous experiment from Cambridge University is shown in Figure 

31. 
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Figure 31. Copper on PMMA flyer plate experimental setup from Cambridge University. 

In this experiment a Cu flyer plate impacts a PMMA target made up of 3 slabs of 

cylindrical PMMA with manganin gages sandwiched between them at 555 m/s. The same 

Mie-Grüneisen equation of state constants apply from Table 2.  

The results can be seen in P-t space for CTH and KO against experimental data in Figure 

32. 

 

 

Figure 32. Cu on PMMA P-t results for CTH and KO against experimental data. 

The peak pressure rise and rise time on the front and back gages is around 2 GPa and 3.4 

µs & 2 GPa and 7 µs, respectively.  CTH and KO agree with these data closely until 5 µs 
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on the front gage, and 7 µs on the back gage. At this point the experimental data exhibits 

a drop in pressure followed by a rise. At this same point in CTH and KO the pressure 

remains constant until 8 µs on the front gage and 10 µs on the back gage, and then drops 

from 2 GPa to around 1.5 GPa for both the front and back gages. The back gage 

experimental data never reaches the peak pressure of 2 GPa, but still shows the same drop 

and rise phenomenon that the front gage exhibits. 

The advantage of using PMMA is that the manganin gage package has about the same 

impedance as PMMA, and thus the ringing effect has been almost completely eliminated. 

The PMMA, as with many plastics, tends to flow along with the impact, thus the distinct 

square waves observed in the Cu impact are not evident with PMMA. Therefore the 

PMMA will not “flow” in the numerical scheme. A different yield strength model or 

constitutive relation might capture this phenomenon better. For example Menikoff33 

developed a constitutive elastic-plastic relation for PMMA, which is valid for shock 

pressures up to 10 GPa. For the purposes of this thesis, a better PMMA strength model 

will not be pursued.  

Although neither of the above experiments was ideally suited as validations of the 

hydrocode due to either gage target impedance mismatch or plastic flow, they do allow a 

qualitative comparison between experiment and numerical simulation, especially between 

CTH and KO. The above two examples validate the approach in two ways. First, 

validation of the Mie-Grüneisen equation of state can be seen for Cu on Cu and Cu on 

PMMA, because the CTH and KO results follow relatively closely to the experimental 

data. Second, KO is validated by CTH because the data is identical for the Cu on PMMA 
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and the Cu on Cu experiments. CTH, a highly evolved code, has been previously 

validated by Bell et al.34. 

 

6.3. Solid on Porous Compaction – Fe on Porous Fe  

This experiment is designed to demonstrate how well the P-α equation of state, which has 

been implemented in CTH and KO, can replicate the dynamic behavior of a porous 

ductile metal. The experimental setup can be seen in Figure 33. 

 

Figure 33. Experimental setup for Fe on Fe powder 

The gages are located at 1.7 cm and 2.1 cm in from the front plate. This setup shown in 

Figure 33 is only a representative experiment, and not the real experiment. Since the 

purpose here is only to recreate the Hugoniot curve for Fe on Fe powder, the setup can be 

arbitrary as long as each plate has enough length to allow one-dimensional pressure 

readings without rarefaction or reflected wave interference during relevant times.  

The Fe powder experiments were conducted for three initial powder densities: 3.30, 4.78, 

and 6.98 g/cc, or αe = 2.37, 1.63, and 1.12.  The experimental Hugoniot data was obtained 



 82 

from Butcher et al. [12]. The equation of state constants for CTH and KO are shown in 

Table 3 from Bell et al [36]. 

Table 3. P-α Equation state constants for Fe and Fe powder [36] 

 Herrmann Data 
KO and CTH input values Fe Porous Fe 

Density, ρ               [g/cc] 7.81 3.30 4.78 6.98 
Specific Density v, [cc/g] 0.128 0.303 0.209 0.143 
Porosity 0.00% 57.75% 38.80% 10.63% 
Specific Heat, cv  [ergs/g/eV] 5.18e10 5.18e10 5.18e10 5.18e10 
Slope, s 1.73 1.73 1.73 1.73 
Bulk sound speed, c0 [cm/µs] 0.463 0.463 0.463 0.463 
Grüneisen parameter, Γ0 1.67 1.67 1.67 1.67 
k1                [Mbar] 1.674222 7.074E-01 1.025E+00 1.496E+00 
k2                [Mbar] 4.394832 1.857E+00 2.690E+00 3.928E+00 
k3                [Mbar] 1.020E+01 4.308E+00 6.240E+00 9.112E+00 
Poisson, µ  0.291 0.291 0.291 0.291 
Pfrac                     [Mbar] 5.40E-03 5.40E-03 5.40E-03 5.40E-03 
Yield, Y                 [Mbar] 5.00E-04 5.00E-04 5.00E-04 5.00E-04 
Shear Modulus, G [Mbar] 7.75E-01 7.75E-01 7.75E-01 7.75E-01 
αp 1 2.37 1.63 1.09 
αe 1 2.37 1.63 1.12 
Pe                [Mbar] 0 0 0.00155 0.006 
Ps                [Mbar] 0 0.005 0.012 0.03 
Initial elastic wave ce [cm/µs] - 0 0.3 0.53 

Table 4 shows the pressure and particle velocity, P-up, data from the experiment, and 

Tables 5 (a) and (b) show the P-up data for the KO and CTH simulations, respectively.  

Table 4. P-up Hugoniot data from Fe powder experiment [12] 

6.98 cc/g 4.78 cc/g 3.30 cc/g 
αe = 1.12 αe = 1.63 αe = 2.37 

up P up P up P 
mm/µs kbar mm/µs kbar mm/µs kbar 
0.270 44.000 0.570 37.000 0.560 19.000 
0.200 29.000 0.360 17.000 0.350 7.600 
0.130 17.000 0.240 9.000 0.270 5.000 
0.060 9.000 0.120 4.000 0.120 1.400 
0.020 6.000 0.010 1.000 - - 
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Table 5 (a). P-up data from KO for Fe – Fe powder 

 
6.98 g/cc 4.78 g/cc 3.30 g/cc 
αe = 1.1 αe = 1.63 αe = 2.37 KO 

Flyer 
velocity up P up P up P 
mm/µs mm/µs kbar mm/µs kbar mm/µs kbar 

10 0.08 8.9 0.09 4.1 - - 
20 0.15 18.7 0.18 6.5 0.19 2.6 
30 0.22 30 0.27 10 0.29 4.4 
35 0.24 42.5 - - - - 
40 - - 0.36 15.7 0.38 9.3 
50 - - 0.44 24 0.43 9.9 
60 - - 0.51 30 0.55 20 

 

Table 5 (b). P-up data from CTH for Fe – Fe powder 

 
6.98 g/cc 4.78 g/cc 3.30 g/cc 
αe = 1.12 αe = 1.63 αe = 2.37 

Flyer 
velocity up P up P up P 
mm/µs mm/µs kbar mm/µs kbar mm/µs kbar 

10 0.09 11.1 0.08 4.3 - - 
20 0.15 20 0.17 7.1 0.13 1.9 
30 0.22 30.5 0.27 9.7 0.23 3.3 
35 - - - - - - 
40 0.28 45 0.35 15.4 0.37 7.7 
50 - - 0.43 23.3 0.45 12 
60 - - 0.57 32.2 0.55 17.2 

Figure 34 is a series of P-up plots resulting from the setup from Figure 33 at given initial 

flyer velocities of Tables 5 (a) and (b) and also compares experimental, computational, 

and analytical data simultaneously. 



 84 

 

 

 

Figure 34. Fe on Fe powder comparison of the experimental data, analytical P-α Hugoniot, and CTH and 

KO computational data in P-up space for each initial powder density. 

The solid curves are the analytical P-α Hugoniot curves as derived by Hermann in section 

2.3. The dotted curves are the fully compacted analytical Hugoniot curves as derived by 

Meyers in section 2.4. These two curves meet continuously at α = 1, see Figure 8 (b). 

There are three continuous curves for each initial powder density. The computational data 

from CTH and KO represent a specific experiment or simulation of a known flyer 

velocity. The experimental data is shown as the large triangles, and the square and 

circular points are CTH and KO simulations, respectively. For all three values of αe, the 

experimental data and analytical Hugoniot curves are in agreement. The Hugoniot curves 

are calculated using the plastic portion of the P-α model for particle velocities 

corresponding to α > 1. For α < 1, the pressure and particle velocity are calculated using 

equations 13 and 14 from section 2.4.  
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KO and CTH implemented the P-α model at the arbitrarily picked initial flyer velocities 

listed in Tables 5 (a) and (b). The pressure was calculated from the release wave on the 

front gage, and the particle velocity was calculated form the peak wave on the back gage. 

After each experiment was simulated in CTH and KO, up-t graphs were used to check if 

the data retained a square wave in order to calculate the Hugoniot particle velocity in the 

powder. If the data retained the square wave as in Figure 35, then the Hugoniot particle 

velocity was easily obtained; however if the data resembled Figure 36, then the Hugoniot 

particle velocity was calculated by averaging the data from peak to peak. 

 

 

Figure 35. Example of KO up-t trace for the release pressure on the front gage for 3.3 g/cc 200 m/s  
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Figure 36. Example up-t trace for the release pressure on the front gage for 3.3 g/cc 600 m/s 

 The front gage release pressure data followed a square wave better than did the back 

gage particle velocity data, this is expected because the powder hasn’t been shocked yet. 

Also as the initial flyer velocity increased, the data tended to get noisier. This is expected, 

because as the shock speeds increase, so will the shock interactions in the powder. The 

pressure was determined from the data and P-t graphs on the front gage in the same 

fashion as the Hugoniot particle velocity on the back gage was determined. Using this 

procedure KO and CTH produce the relatively similar results for each of the powder 

densities of interest across all the experiments. Therefore, KO, and the implementation of 

P-α, has been verified as working as well as CTH for the dynamic compaction of porous 

Fe powder for an αe < 2. 

With these experimental versus numerical results it is concluded that the P-α model 

within both CTH and KO has been validated.    
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6.4. Solid on Porous Compaction – PMMA on Porous Silica  

This experiment was conducted at Cambridge University with a PMMA flyer hitting 

porous amorphous Degussa Sipernat 50 µm silica powder that is packed in between 

PMMA plates as seen in Figure 2 (a). There are 3 initial densities for the silica: 0.1, 0.25, 

and 0.7 g/cc, and there are 5 particle velocities for each density ranging from about 220 to 

1100 m/s. Figure 37 shows the Us-up Hugoniot for porous silica against extrapolated 

experimental data found from Figure 3. 

 

 

Figure 37. Us-up Hugoniot for porous silica compared with extrapolated data from Figure 3. 

The extrapolated aerosil data has a slope and bulk sound speed (y-intercept) that fits well 

to the 0.25 g/cc and 0.1 g/cc silica powder slopes as seen in Figure 37. Neither the quartz 

nor the silicic acid have a slope or bulk sound speed that fits well to the 0.77 g/cc powder. 

In general a change in slope of the Us-up Hugoniot indicates that the material is 

undergoing a phase change. Since the experimental data is being extrapolated, there isn’t 

any guarantee that the powder has changed phase. 

Table 6 shows the dimensions and particle velocities for the 15 experiments with last 5 

columns referring to Figure 2 (a). 
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Table 6.  Flyer plate experimental setup, refer to Figure 2 (a). 
 

Specific 
Volume 
[cc/g] 

Density 
[g/cc] 

Shot 
Velocity 
[m/s] 

Front 
plate ta 
[mm] 

Front 
plate tb 
[mm] 

Powder 
Thickness 
[mm] 

Back 
plate tc 
[mm] 

Back 
plate td 
[mm] 

10 0.10 405 5 3 3 0 20 
10 0.10 603 5 3 3 3 20 
10 0.10 758 5 3 3 0 20 
10 0.10 900 5 3 3 3 20 
10 0.10 1100 5 3 3 3 20 
4 0.25 220 2 2 3 0 10 
4 0.25 599 2 2 3 0 10 
4 0.25 600 2 2 1 0 10 
4 0.25 603 2 2 5 0 10 
4 0.25 900 2 2 3 0 10 

1.30 0.77 280 2 2 3 0 10 
1.30 0.77 455 2 2 3 0 10 
1.30 0.77 603 2 2 3 0 10 
1.30 0.77 800 2 2 3 0 10 
1.30 0.77 979 2 2 3 0 10 

The equation of state constants for the CTH and KO calculations can be found in Table 7. 

Table 7. KO and CTH equation of state constants for PMMA on Silica10, 35 

 Cambridge Data 
CTH and KO input values Silica powder Silica PMMA 
Density, ρ               [g/cc] 0.77 0.25 0.10 2.2 1.182 
Specific volume v [cc/g] 1.299 4.000 10.000 0.455 0.846 
Porosity 65.00% 88.64% 95.45% 0.00% 0.00% 
Specific Heat, cv  [ergs/g/eV] 1.0e10 1.0e10 1.0e10 1.0e10 1.11e10 
Slope, s 0.41 1.28 1.15 0.1048 1.23 
Bulk sound speed, c0 [cm/µs] 0.1071 0.0121 0.0035 0.5124 0.273 

Grüneisen parameter, Γ 0.9 KO 2.8 0.3 0.9 0.85 CTH 0.9 
k1                            [Mbar] 8.831E-03 3.660E-05 1.225E-06 5.776E-01 8.809E-02 
k2                            [Mbar] 3.267E-03 4.246E-05 2.634E-06 -1.389E-01 1.793E-01 
k3                            [Mbar] 1.195E-03 4.873E-05 4.438E-06 -3.545E-02 3.077E-01 
Poisson, µ  0.333 0.333 0.333 0.333 0.3 
Pfrac                      [Mbar] 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-03 
Yield, Y                  [Mbar] 1.00E-09 1.00E-09 1.00E-09 1.00E-09 6.80E-05 
Shear Modulus, G  [Mbar] 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.50E-02 
αp 2.86 8.80 22.00 - - 
αe 2.86 8.80 22.00 - - 
Pe                            [Mbar] 0 0 0 - - 
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Ps                            [Mbar] 0.0285 0.005 0.002 - - 

In order to determine the proper resolution for each experiment, the mesh was converged 

for both CTH and KO.  The variability in the P-t results for both CTH and KO as a 

function of mesh resolution is presented in Figures 38 and 39 respectively. 

 

 

Figure 38. CTH mesh convergence for 0.77 g/cc 455 m/s P-α model 

 

 

Figure 39. KO mesh convergence for 0.77 g/cc 455 m/s P-α model 
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The large variability reported by the back gage at approximately 6 µs is due to noise 

generated when the front gage failed. The results of Figures 38 and 39 indicate that the 

mesh converges at 1000 nodes /cm for KO and 1250 nodes / cm for CTH where the 

difference on the time of arrival on the back gage between 1000 and 1250 nodes / cm was 

0.03 % . Over all the 15 experiments listed in Table 6, CTH computed the dynamic 

compaction to a time of 16.8 µs after impact in fewer than 20,000 iterations with a wall 

clock time under 20 minutes on a Linux 1 GHz Xeon processor.  

KO for the 0.77 g/cc silica powder experiments computed the dynamic compaction to 

16.8 µs in fewer than 4000 iterations and under a wall clock time of 5 minutes on a 2.8 

GHz Pentium 4 processor. For the 0.25 and 0.1 g/cc silica powder experiments, the most 

computationally expensive experiment to simulate was the 0.1 g/cc powder MG at an 

initial flyer velocity of 1100 m/s.  This is a direct result of the Courant stability criteria 

which requires that the time step be a function of the cell size divided by the shock speed.  

The powder with the smallest initial density, i.e. 0.1 g/cc, will crush the most and result 

in the smallest cell size.  The experiment with the highest impact velocity will result in 

the fastest shock wave.  Thus the combination of ρ00 = 0.1 g/cc with a1100 m/s impact 

velocity increases the shock speed, and reduces the time step.  On the same P-3 

processor, the wall clock time was about 30 hrs, and 10 million iterations at a resolution 

of 500 nodes / cm.  The resolution of the intermediate 0.1 g/cc shots required a lower 

resolution, because those simulations failed to yield results at higher resolutions to be 

discussed in section 5.2.4.3. The resolution for each simulation is shown in Table 8. 
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Table 8. KO and CTH simulation parameters 
 

Density, r00  
(g/cc) 

Shot Velocity 
 (m/s) 

KO Nominal 
Resolution 
(nodes/cm) 

CTH Nominal 
Resolution 
(nodes/cm) 

KO 
Sound speed 

divisor 

MG P-α MG P-α 

0.10 

405 1000 1000 

1250 

2 4 
603 100 1000 5 2 
758 100 1000 2 5 
900 100 1000 2 5 

1100 500 1000 2.1 1.9 

0.25 

220 

1000 

2 3 
599 5 5 
600 5 5 
603 5 5 
900 5 4 

0.77 

280 5 5 
455 5 5 
603 5 5 
800 5 5 
979 5 5 

 

6.4.1. 0.77 g/cc silica powder results  

 The results for the 0.77 g/cc silica powder can be seen in Figures 40-44. 

 

 

Figure 40. P-t diagram for 0.77 g/cc with initial flyer velocity of 280 m/s. 
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Figure 41. P-t diagram for 0.77 g/cc with initial flyer velocity of 455 m/s. 

 

 

 

 

Figure 42. P-t diagram for 0.77 g/cc with initial flyer velocity of 603 m/s. 
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Figure 43. P-t diagram for 0.77 g/cc with initial flyer velocity of 800 m/s. 

 

 

 

 

Figure 44. P-t diagram for 0.77 g/cc with initial flyer velocity of 970 m/s. 

Each of the previous 6 figures represent a different experiment by flyer velocity only, and 

have the front and back gage data with a time frame adjustment shown. The first peak 
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wave represents the Hugoniot peak pressure within the PMMA as the shock traverses the 

front gage. The rounding of the experimental data at the top of the initial rise and fall of 

the peak pressure is a result of the PMMA flow at release. The release pressure on the 

front gage represents the shock interaction between the PMMA and the silica powder. 

The back gage should have a pressure rise equivalent to the front gage release pressure, 

and then ideally should become a series of stepped square waves that represent the 

reflected and rarefaction waves interacting towards the end of the experiment in the 

silica. However, the experimental data shows a gradual rise in pressure that resembles 

square wave behavior. One theory holds that the silica powder gives weak compaction 

waves instead of instantaneous shock waves. Also, Yaziv et al.36 showed that manganin, 

work hardens as it is being strained, and developed a model that can calibrate manganin 

at unloading. If the manganin on the front gage is plastically deforming as the initial 

shock wave passes, the gage will not return to the original length. Therefore, when the 

reflected shock passes by the manganin gage on the front the release pressure will always 

retain residual stress that will be added onto the release pressure. This can explain why 

experimentally the front gage release pressure is not equivalent to the back gage peak 

pressure, however computationally the release pressure on the front and back does equal 

to the peak pressure on the back gage. Future work could integrate computationally any 

of the manganin models referenced here. 

For Figures 40-44, the computational codes do not exactly match the experimental data; 

however, each produces similar results. CTH and KO compare favorably for the initial 

rise time and peak pressure for the front gage across all initial flyer velocities.  This is to 

be expected since the shock Hugoniot for PMMA is well known [1].  Both MG and P-α 
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for either CTH or KO give nearly identical results for the front gage and compare well 

with the experimental data. Therefore as expected PMMA is well characterized by these 

models in both hydrocodes. In terms of the release pressure, the MG EOS tends to model 

the experimental data better for initial flyer velocities less than or equal to 603 m/s, 

neither reproduces the experimental data well at 800 m/s, and P-α tends to model the 

experimental data better at 970 m/s. P-α has a release pressure that is consistently higher 

than MG for all the experiments.  

For the back gage the MG EOS consistently predicts the initial rise time, and does an 

adequate job of predicting the peak pressure for the experimental data for the initial flyer 

velocities below 800 m/s. P-α predicts the initial rise time to be earlier for all 

experimental runs, and also has a higher peak pressures than MG. Also for the 970 m/s 

run, P-α does a better job of predicting the peak pressure. This is expected, because the 

front gage release pressures for the experiments under 800 m/s were predicted better with 

MG, and for the 970 m/s run P-α predicted the experimental data better. The “steps” that 

are shown at the latest time for the back gage are wave interactions that occur when 

reflected waves and/or rarefaction waves collide. These rarefaction waves are generated 

when the shock waves reach the free surface and propagate back into the target. In terms 

of the experiment, the simulations are generally considered validated before those 

interactions reach the gages. 

Also, the computational models are consistent with each other for all initial flyer 

velocities. The front and back gages are relatively the same for MG and P-α, respectively. 

This indicates that for the 0.77 g/cc powder, KO predicts the dynamic compaction 

characteristics of the silica powder as well as CTH for the P-α and MG models.  
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Furthermore, Figure 45 shows in P-v space the computational, experimental, and 

analytical Hugoniot curves for CTH and KO implementing the MG and P-a equations of 

state for 0.77 g/cc silica powder. 

 

 

Figure 45. P-v diagram showing the computational, experimental, and analytical Hugoniot curves for 0.77 

g/cc silica powder 

CTH and KO reproduce the analytical Hugoniot curves for MG and P-a, respectively. 

The experimental data closely follows the MG and P-a theoretical Hugoniot curves. The 

dotted Hugoniot curve is the solid silica Hugoniot, which meets the P-a Hugoniot at the 

given value of Ps = 2.85 GPa.   Figure 45 explains the variability in the calculations with 

respect to the data as seen in Figures 40-44.  The solid grey line in Figure 45 is a linear 

curve fit to the data in Us-up space, transformed via the jump equations to P-v space.  

There is a large amount of variability between the data and the linear Mie-Grüneisen 

Hugoniot curve fit.  The computations faithfully follow the curve fit MG Hugoniot, 

which is the input equation of state.  As a result there is variably in the calculations with 
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respect to the data.  The P-α Hugoniot represents a best guess to the actual MG Hugoniot 

in the absence of data.  Although the computations utilizing the P-α EOS, as would be 

expected, follow the P-α Hugoniot, it is obvious from the Figure 45 that the best guess 

does not accurately represent the data. 

 

6.4.2.  0.25 g/cc silica powder results  

The EOS constants for the silica powder with an initial density of 0.25 g/cc for CTH and 

KO are listed in Table 7. These constants differ only in Grüneisen coefficient. For all of 

the experiments, the simulated back gage initial rise time utilizing the MG EOS 

significantly differed from the experiment, especially when simulating the experiment 

with an impact velocity of 220 m/s. However, for KO it was found that by increasing the 

Grüneisen coefficient the back gage initial rise time would also increase as seen in Figure 

46. 

 

 

Figure 46. P-t diagram for 0.25 g/cc with initial flyer velocity of 220 m/s with Γ variation. 
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The Grüneisen coefficient’s effect on the rise time of the silica powder stems from the 

equation of pressure in the MG EOS. Pressure is the summation of the volumetric and 

energetic nature of the medium. Each of these terms is a function of Γ. In terms of the 

volumetric pressure term, Γ is only found in the higher order x terms, i.e. k2 and k3. 

Equation 103 shows how Γ affects the energy portion of the pressure. As the energy or 

volume inside the powder increases, the pressure will to rise. If the energy is being 

multiplied by a larger number the pressure will start to rise sooner, and vice versa. 

Therefore from Figure 46, iterating for Γ on the 220 m/s case shows that 2.8 generates the 

best result to achieve the same rise time as CTH. The reason why CTH was chosen as the 

reference point and not the experimental data is only because KO to CTH verification is 

the main focus here. 

As a check, Γ was increased in the same fashion for MG in CTH with no effect in the 

initial rise time or the peak pressure for the front or back gages. It is suspected that the 

cause for this is that CTH only uses the Grüneisen coefficient as a means for calculating 

temperature. Thus, this coefficient is not a function of pressure for CTH. The Grüneisen 

coefficient was set to 2.8 for all the MG simulations in KO for the silica powder with an 

initial density of 0.25 g/cc. 

The schematic for each experiment is shown in Figure 2 (a) with the dimensions listed in 

Table 6. The powder thicknesses for the flyer plate velocities of 599, 600, and 603 m/s 

experiments are 3, 1, and 5 mm, respectively. The pressure - time traces for the silica 

powder with an initial density of 0.25 g/cc are shown in Figures 47-51. 
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Figure 47. P-t diagram for 0.25 g/cc with initial flyer velocity of 220 m/s. 

 

 

 

Figure 48. P-t diagram for 0.25 g/cc with initial flyer velocity of 599 m/s. 
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Figure 49. P-t diagram for 0.25 g/cc with initial flyer velocity of 600 m/s. 

 

 

 

Figure 50. P-t diagram for 0.25 g/cc with initial flyer velocity of 603 m/s. 
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Figure 51. P-t diagram for 0.25 g/cc with initial flyer velocity of 900 m/s. 

The above Figures 47-51 show that the experimental results obtained from the front gage 

embedded in the PMMA is well characterized by both the MG and P-α equations of state 

in both CTH and KO across all initial flyer velocities. Unlike the silica powder with an 

initial density of 0.77 g/cc, the simulations utilizing the P-α EOS better predict the 

experimental release pressure on the front gage than MG. As the initial flyer velocities 

decrease from 900 m/s the release pressure prediction by P-α approaches the 

experimental release pressure. KO and CTH have almost identical traces on the front 

gage for MG and P-α, respectively. 

In terms of the back gage pressure, KO and CTH both predict the P-α model to have an 

initial rise time earlier than the experimental and MG data for the back gage for each 

initial flyer velocity. The powder thickness in Figure 50 is 5 mm, and the P-α model 

under predicts the peak pressure on the back gage significantly. KO and CTH show fair 

agreement with respect to the P-α model for each of the initial flyer velocities. The 

ringing effect that is shown in Figures 48 and 51 at the tail end of the back gage on the 
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KO P-α model can be reduced by forcing KO take shorter time step advances as will be 

shown in section 5.2.4.3, however this also causes the program to run significantly 

longer.  

The initial rise time of back gage pressure predicted by CTH provides fair agreement 

with the experimental data implementing MG. In Figure 47, the KO and CTH simulations 

of the back gage are almost identical. Figures 48-51 illustrate that for the KO simulations 

utilizing the MG EOS each rise to a peak pressure much lower than the experimental data 

and CTH.  

KO wasn’t able to predict the back gage data fully for all but Figure 47 at a resolution of 

1000 nodes / cm, because the computational distance between nodes within the silica 

powder would approach 0, which in turn forces the volume to infinity. The KO program 

predicts that the density exceeds 10^10 g/cc. Since these densities are non-physical the 

simulations were terminated where the back gage data stops in time for MG in KO in 

Figures 48-51. Also, KO under predicts the peak pressure reported by the back gage for 

each of the cases in Figures 48-51.  

In terms of the back gage, CTH utilizing the MG equation of state, see Figure 48 predicts 

the experimental data the best. The worst back gage prediction for CTH with the MG 

equation of state is Figure 50 with a 5 mm powder thickness. All in all the MG equation 

of state in CTH on the back gage most accurately predicts the experimental data. 

Furthermore, Figure 52 presents the computational, experimental, and analytical P-v 

Hugoniot space for CTH and KO implementing the MG and P-a equations of state for 

0.25 g/cc silica powder. 
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Figure 52. P-v diagram showing the computational, experimental, and analytical Hugoniot curves for 0.25 

g/cc silica powder 

As can be seen in Figure 52, the computational data for CTH and KO reproduce the MG 

theoretical Hugoniot curve fairly well. CTH adequately reproduces the theoretical P-α 

Hugoniot curve, but KO over predicts the pressure and specific volume. Also, the 

experimental data follows the MG Hugoniot curvature accurately.  

The MG EOS can only be utilized knowing the experimentally determined Hugoniot; the 

Hugoniot is directly fit to the experimental data. Thus it is no surprise that the numerical 

simulations which utilize the MG EOS follow the MG Hugoniot. However, for a different 

material or a silica powder with a different initial density the experimental data may not 

be known. The P-α equation of state could be fitted to this data. However, the purpose of 

this model is to predict the unknown dynamic compaction of the powder. Thus the P-α 

EOS can be utilized as a theoretical approximation to the experimentally determined 

Hugoniot, and can be employed within a hydrocode without a prior knowledge of the 

Hugoniot.  
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Overall neither model in either hydrocode accurately predicts the experimental Hugoniot 

data very well. KO reproduces the CTH data better for MG than P-α, but the P-α model 

does show fair agreement from the time traces in Figures 47-51. Thus CTH verifies the 

P-α model in KO for silica powder at 0.25 g/cc, and MG model remains unverified in 

KO.  

 

6.4.3. 0.1 g/cc silica powder results  

Dimensions for the 0.1 g/cc silica powder experiment are presented in Table 6. At this 

highly distended initial powder density, KO was not able to complete the simulations at a 

resolution of 1000 nodes / cm. Therefore the resolution was reduced as presented in 

Table 8 above for each simulation. The P-t dynamic compaction results for the silica 

powder with an initial density of 0.1 g/cc are shown in Figures 53-57. 

 

 

Figure 53. P-t diagram for 0.1 g/cc with initial flyer velocity of 405 m/s. 
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Figure 54. P-t diagram for 0.1 g/cc with initial flyer velocity of 603 m/s. 

 

 

 

Figure 55. P-t diagram for 0.1 g/cc with initial flyer velocity of 758 m/s. 
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Figure 56. P-t diagram for 0.1 g/cc with initial flyer velocity of 900 m/s. 

 

 

 

Figure 57. P-t diagram for 0.1 g/cc with initial flyer velocity of 1100 m/s. 

As in the case of the previous two experiments with different initial densities, the front 

gage initial rise time and peak pressures are well characterized by both CTH and KO as 

compared to the experimental data utilizing either the MG or P-α EOS, see Figures 53-
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57. The release pressures for CTH and KO are all lower than the experimental data as 

predicted from the manganin gage work hardening.  

The KO P-α model has a higher resolution than the KO MG model according to Table 8. 

Figure 57 is an example showing that KO does allow the PMMA to be well described 

before the density would approach infinity, and ultimately end the simulation. The time 

trace in KO was simulated twice, once at the 1000 node / cm resolution to achieve the 

front gage data, and then at 500 nodes / cm to achieve the back gage data. The same 

could have been followed to obtain the results in Figures 54-56; however, this was 

unnecessary for this discussion. 

For Figure 53, the MG equation of state poorly predicts the back gage rise time, however 

reaches the peak pressure. Attempts to change the Grüneisen coefficient failed to give a 

tuned value for the back gage rise of the experimental data. This is due to low resolution 

as seen in Figure 58 with the best attempt to model the back gage rise time for CTH with 

a Grüneisen coefficient of 2.1. 

 

 

 

Figure 58. P-t trace of the experiment in Figure 53 with the Grüneisen coefficient varied 
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The resolution for Figure 58 is 100 nodes / cm, because this was determined to be the 

highest resolution the program could support for the back gage to start rising. Figure 58 

also shows that there was no solution found to match the CTH back gage rise time. 

Therefore the initial Grüneisen coefficient of 0.3 was chosen for the remaining initial 

flyer velocities.  

For Figures 54-57 MG in CTH predicts the initial rise times and peak pressures on the 

back gage with increasing accuracy with increasing initial flyer velocities. KO has a 

significantly lower resolution, which can account for the slight deviation from CTH on 

the initial rise times on the front and back gages, but the peak and release pressures are 

about the same. 

In general, P-α predicts the an initial rise time on the back gage earlier than the 

experimental data as the initial flyer velocities decrease. The peak pressure for P-α is 

reasonable in comparison to the experimental data for KO and CTH. For Figures 52-56, 

the experimental data has a step in pressure before achieving the peak pressure due likely 

to reflected waves. The P-α EOS shows the same step, but since the PMMA is flowing 

with the impact pressure releases, and the manganin gages are work hardening, the step is 

skewed. KO and CTH compare to each other favorably for the P-α model in Figures 53-

57.  

There is a ringing effect that can be seen at the tail end of the back gage in Figures 53 and 

55 for KO P-α. This is most likely numerical ringing, and does not represent any physical 

phenomenon. The amplitude of the ringing can be reduced by lowering the time step 

below the Courant stability criterion within KO. The numeric program can not advance in 

time any faster than the smallest tine calculated by cell length divided by shock velocity, 
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i.e. the fastest wave in the scheme. This is known as the Courant condition. This 

condition prevents any information from being skipped over a node as waves traverse the 

numerical space. If a wave passes a node before the code has a chance to adjust the 

properties at that node, then non-physical phenomena can occur that can cause 

instabilities within the calculations and eventually lead to the program crashing. 

Therefore, to reduce this ringing effect, the minimum time step in the program is divided 

by an appropriate constant > 1, see table x for divisors used in this analysis. The program 

can then slow down enough to allow all information to be passed through the numerical 

scheme. However, increasing this divisor too high can cause the program to run 

significantly slower and increase error due to numerical round-off due to excessive 

calculations. Decreasing the divisor towards 1 can increase chances of numerical 

instability.  An example of this procedure can be seen in Figure 59 for the 0.1 g/cc 405 

m/s P-t diagram.  These results should be compared with the results presented in Figure 

53. 
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Figure 59. P-α model with KO time step divisor of 4 for 0.1 g/cc 405 m/s. 

By comparing Figures 59 and 53, the data on the back gage of KO P-α has reduced 

ringing. The divisor in Figure 53 is 5, and the divisor is 4 in Figure 59. Divisors for all 15 

experiments can be seen in Table 8.  

Furthermore, Figure 60 shows in P-v space the computational, experimental, and 

analytical Hugoniot curves for CTH and KO implementing the MG and P-a equations of 

state for 0.1 g/cc silica powder. 
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Figure 60. P-v diagram showing the computational, experimental, and analytical Hugoniot curves for 0.1 

g/cc silica powder 

Since the Hugoniot is formed by fitting experimental data it is no surprise that the 

experimental data as well as the computational data utilizing the MG EOS seem to follow 

the MG theoretical Hugoniot curve. Therefore it should be noted that the experimental 

data in Figures 45, 52, and 60 all follow the MG theoretical Hugoniot agreeably. The 

same can be said for the P-α Hugoniot curve and the computational data for Figures 45, 

52, and 60, but not the experimental data. This is the key to the P-α model in that its 

success is based on how well the experimental data can be reproduced without prior 

knowledge. In this case with porous silica powder, the P-α model poorly reproduces the 

data for all the initial silica powder densities. 

On the other hand, the CTH and KO computational data compare well with the MG and 

P-α theoretical Hugoniot curves, respectively. Thus KO is verified by CTH implementing 

the P-α model for 0.1 g/cc silica powder. The MG equation of state works well in CTH, 

but only adequately works in KO mostly due to resolution issues caused by a large 

density error.  
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7. Conclusions 

The static and dynamic compaction characteristics of porous silica powder have been 

investigated in this thesis. The static compaction experiment shows the surface area of the 

uncrushed powder is relatively the same as the surface area of the each compacted wafer. 

If the silica particles were welding together by atomic bonding, then the surface area 

would be decreasing per unit weight. Therefore, the results indicate that particles are not 

bonding together.  

The distinguishing factor of this research is that the dynamic experiments investigated are 

in the relatively low shock velocity – particle velocity region. Also, the compaction of 

these highly distended powders has not been widely analyzed. There are two equations of 

state that have been implemented for the computational simulation of porous powders, 

with the main difference between the two models being that one requires experimental 

data fits to be useful, whereas the other does not. This is an important point, because 

many materials lack relevant experimental data, and experiments give the best results 

when the dimensions and gage locations have been thoroughly examined beforehand. The 

models have been programmed into two hydrocodes. One hydrocode has been 

extensively verified, but has been deemed export controlled. The other hydrocode can be 

freely distributed, but has yet to be thoroughly verified.  

The dynamic results showed first that the Mie-Grüneisen equation of state in the KO 

hydrocode works as well as in the CTH hydrocode. Second, that the P-α porous equation 

of state in the KO hydrocode predicted the Hugoniot state of well characterized solid Fe 

impacting well characterized porous Fe as well as in the CTH hydrocode.  

Each hydrocode then showed how each EOS simulated the dynamic compaction of 

porous silica being impacted by PMMA. The dynamic compaction characteristics of 
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porous silica powder were compared computationally against both experimental data 

from Cambridge University. The results indicate that the PMMA is well characterized by 

both hydrocodes implementing each model for all 15 experiments as expected. The 

results also show that the silica powder is not well analyzed using either hydrocode 

implementing either model to the experimental data at any initial powder density.  

Ultimately we do not know enough about the silica powder to accurately characterize the 

Hugoniots. However, KO does reproduce the CTH results accurately for the 0.77 and 0.1 

g/cc powders for both the MG and P-α models. For the 0.25 g/cc silica powder, the P-α 

model adequately reproduces the CTH computational data, and the MG model remains 

unverified in KO. Therefore KO is verified against CTH for the prediction of Degussa 

Sipernat 50 µm porous silica powders at relatively low densities in the low shock velocity 

– particle velocity regime.  
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8. Future Research 
On a computational level, the dynamic compaction of porous silica powder at porosities 

greater than 50 % has had limited success. The KO program has been able to reproduce 

the CTH data for the P-α model across all initial powder densities. This model has a 

distinct advantage in that prior knowledge of experimental data in unnecessary. However, 

this model was unable to accurately predict the experimental data provided by Cambridge 

University. As a starting point, fitting the experimental data to the P-α model can be 

pursued. Any successes found here can help iterate at the unknown values of this model 

for each silica density, i.e. Ps, Pe, αe, αp. This model may have to be amended in or for the 

silica powder to have proper agreement to the experimental data.  

Prior attempts at modeling the dynamic compaction of porous silica can be seen in 

reference [10], using the P-λ model from Section 3.7. Since there is air that is still trapped 

in between the agglomerated matrix, this model can account for such a matrix. 

Furthermore, the static compaction results from this research showed no direct relation 

from static to dynamic compaction for characterizing porous silica. Possibly by trying a 

pore size calculation by BET or mercury porosimetry could yield such a relation, which 

would be a starting point for a new equation of state for dynamic compaction.  

Another starting point for a new EOS is found from the fact that the silica powder in the 

static compaction experiment never exceeded a density of 0.7 g/cc. This is puzzling, 

because the solid density of sand is 2.2 g/cc. Sintering the silica wafers might bond the 

individual particles together to achieve the 2.2 g/cc wafers. These wafers may give rise to 

a new model which takes into account the heating that may take place in the dynamic 

compaction process. 
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