# Appendices

# A. Effect of a Second Shock on the Principal Hugoniot

Given an equation of state

$$P = a\mu + b\mu^2 + c(1+\mu)E,$$

where

$$\mu = rac{1}{V} - 1, \qquad V = ext{relative volume}.$$

We wish to find how much a second compression from a point on the principal Hugoniot differs from the principal Hugoniot.

The principal Hugoniot is obtained by substituting in the equation of state the relation  $E = E_0 + 1/2(P + P_0)(V^0 - V)$  where  $E_0 = 0$ ,  $P_0 = 0$ , and  $V^0 = 1$ . For the given equation of state this yields

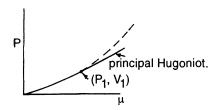
$$P = \frac{a\mu + b\mu^2}{1 - c\mu/2} \qquad \text{(principal Hugoniot)}.$$
 (A.1)

For  $\mu < 0.25$  we may write

$$P \sim a\mu + \left(b + \frac{ac}{2}\right)\mu^2 + \frac{1}{2}c\left(b + \frac{ac}{2}\right)\mu^3.$$
 (A.2)

To calculate the Hugoniot starting from the point  $(P_1, V_1, E_1)$  on the principal Hugoniot (Fig. A.1), we substitute in the equation of state the relation  $E = E_1 + 1/2(P + P_1)(V_1 - V)$ . Let  $V_1 = 1 - \delta$ , then  $E_1 = 1/2P_1\delta$ . We have

$$P = a\mu + b\mu^{2} + c(1+\mu) \left[ E + \frac{P+P_{1}}{2}(V_{1}-V) \right]$$
  
$$= a\mu + b\mu^{2} + \frac{c}{2} \left[ P_{1}\frac{\delta}{V} + P\left(\mu - \frac{\delta}{V}\right) + P_{1}\left(\mu - \frac{\delta}{V}\right) \right]$$
  
$$= a\mu + b\mu^{2} + \frac{c}{2} \left[ P\left(\mu - \frac{\delta}{V}\right) + P_{1}\mu \right].$$



**Fig. A.1.** Hugoniot from point  $(P_1, V_1)$  on principal Hugoniot

The Hugoniot for points above the initial point  $\left(P_1, V_1 = 1 - \delta, E_1 = \frac{P_1\delta}{2}\right)$  is

$$P = \frac{a\mu + b\mu^2 + \frac{c}{2}P_1\mu}{1 - \frac{c}{2}\left(\mu - \frac{\delta}{V}\right)}.$$
 (A.3)

Expanding, we get

$$\begin{split} P &= a\mu + b\mu^{2} + \frac{c}{2}P_{1}\mu + \frac{ac}{2}\mu\left(\mu - \frac{\delta}{V}\right) \\ &+ \frac{bc}{2}\mu^{2}\left(\mu - \frac{\delta}{V}\right) + \frac{c^{2}}{4}P_{1}\mu\left(\mu - \frac{\delta}{V}\right) + \frac{c^{2}}{4}a\mu\left(\mu - \frac{\delta}{V}\right)^{2} \\ &= a\mu + \left(b + \frac{ac}{2}\right)\mu^{2} + \frac{c}{2}\left(b + \frac{ac}{2}\right)\mu^{3} - \frac{ac}{2}\mu\frac{\delta}{V} \\ &- \frac{bc}{2}\mu^{2}\frac{\delta}{V} - \frac{c^{2}}{2}a\mu^{2}\frac{\delta}{V} + \frac{c^{2}}{4}a\mu\frac{\delta^{2}}{V^{2}} \\ &+ \frac{c}{2}\mu P_{1}\left[1 + \frac{c}{2}\left(\mu - \frac{\delta}{V}\right)\right]. \end{split}$$

Rearranging the terms and replacing  $P_1$  by (A.2) we obtain

$$P = \frac{a\mu + \left(b + \frac{ac}{2}\right)\mu^2 + \frac{c}{2}\left(b + \frac{ac}{2}\right)\mu^3}{-\frac{c}{2\mu}\left[a\frac{\delta}{V} + \left(b + \frac{ac}{2}\right)\mu\frac{\delta}{V} - \frac{c}{2}a\frac{\delta^2}{V^2}\right]}$$
(A.4)  
+  $\frac{c}{2}\mu\left[a\mu_1 + \left(b + \frac{ac}{2}\right)\mu_1^2 + \frac{1}{2}c\left(b + \frac{ac}{2}\right)\mu_1^3 + \dots\right].$ 

The underlined terms in (A.4) are the same as the principal Hugoniot. Since  $\frac{\delta}{V} \sim \mu_1$  and c is usually between 1 and 2, equation (A.4) is very nearly equal to the principal Hugoniot except for high order terms.

## B. Finite Difference Program for One Space Dimension and Time

The partial differential equations and the corresponding finite difference equations are those used by the KO computer program. Time-dependent flows in one space variable, r, are described for plane (d = 1), cylindrical (d = 2), and spherical (d = 3) geometries.

**B.1 Fundamental Equations** Equation of motion  $\frac{\rho_0 \dot{U}}{V} = \frac{\partial \Sigma_r}{\partial r} + (d-1) \frac{\Sigma_r - \Sigma_\theta}{r},$ where U is the particle velocity. Conservation of mass  $\frac{dM}{dt} = 0$ with M a mass element. 3. First law of thermodynamics  $\dot{E} - V[s_1\dot{\varepsilon}_1 + (d-1)s_2\dot{\varepsilon}_2] + (P+q)\dot{V} = 0.$ 

4. Velocity strains

$$\begin{split} \dot{\varepsilon}_1 &= \frac{\partial U}{\partial r}, \\ \dot{\varepsilon}_2 &= \frac{U}{r}. \end{split}$$

5. Stress deviators

$$\begin{split} \dot{s}_1 &= 2\mu \left( \dot{\varepsilon}_1 - \frac{1}{3} \frac{\dot{V}}{V} \right), \\ \dot{s}_2 &= 2\mu \left( \dot{\varepsilon}_2 - \frac{1}{3} \frac{\dot{V}}{V} \right), \\ \dot{s}_3 &= 2\mu \left( \dot{\varepsilon}_3 - \frac{1}{3} \frac{\dot{V}}{V} \right). \end{split}$$

Note: Three stresses are identified here, even though they are not all required in order to maintain an analogy with the two and three dimensional programs.

6. Pressure equation of state

$$P = a(\eta - 1) + b(\eta - 1)^{2} + c(\eta - 1)^{3} + d\eta E$$

with  $\eta = 1/V = \rho/\rho_0$  and where a, b, c, and d are equation-of-state constants.

7. Total stresses

$$\Sigma_r = -(P+q) + s_1$$
  
$$\Sigma_\theta = -(P+q) + s_2$$

8. Artificial viscosity

$$q = C_0^2 \frac{\rho_0}{V} \left(\frac{\partial U}{\partial r}\right)^2 (\Delta r)^2 + C_{\rm L} \frac{\rho_0 a}{V} \left(\frac{\partial U}{\partial r}\right) \Delta r,$$

where  $C_{\rm L}$  and  $C_0$  are constants,  $a = \sqrt{P/\rho}$ , and  $\Delta r$  is the grid spacing. 9. Von Mises yield condition

$$(s_1^2 + s_2^2 + s_3^2) - \frac{2}{3}(Y^0)^2 \le 0$$

with  $Y^0$  the plastic flow stress.

### **B.2** Finite Difference Equations

1. Mass zoning

where  $\rho_0$  is the equation-of-state reference density and  $V_0$  the initial relative volume.

2. Equation of motion

$$U_{j}^{\frac{n+\frac{1}{2}}{2}} = U_{j}^{n-\frac{1}{2}} + \frac{\Delta t^{n}}{\phi_{j}^{n}} \left[ (\Sigma_{r})_{j+\frac{1}{2}}^{n} - (\Sigma_{r})_{j-\frac{1}{2}}^{n} \right] + \Delta t^{n}(\beta_{j}^{n})(d-1),$$

where

$$\begin{split} & \left( (\Sigma_{r}^{n})_{j+\frac{1}{2}} = \left[ -(P^{n}+q^{n-\frac{1}{2}})+s_{1}^{n} \right]_{j+\frac{1}{2}}, \\ & \left( \Sigma_{\theta}^{n} \right)_{j+\frac{1}{2}} = \left[ -(P^{n}+q^{n-\frac{1}{2}})+s_{2}^{n} \right]_{j+\frac{1}{2}}, \\ & \left( \phi_{j}^{n} = \frac{1}{2} \left[ \rho_{0_{j+\frac{1}{2}}} \left( \frac{r_{j+1}^{n}-r_{j}^{n}}{V_{j+\frac{1}{2}}^{n}} \right) + \rho_{0_{j-\frac{1}{2}}} \left( \frac{r_{j}^{n}-r_{j-1}^{n}}{V_{j-\frac{1}{2}}^{n}} \right) \right] \right], \\ & \beta_{j}^{n} = \frac{1}{2} \left\{ \left[ \frac{(\Sigma_{r})_{j+\frac{1}{2}}^{n} - (\Sigma_{\theta})_{j+\frac{1}{2}}^{n}}{\frac{1}{2}(r_{j+1}^{n}+r_{j}^{n})} \right] \left( \frac{V^{n}}{\rho_{0}} \right)_{j+\frac{1}{2}} \right. \\ & \left. + \left[ \frac{(\Sigma_{r})_{j-\frac{1}{2}}^{n} - (\Sigma_{\theta})_{j-\frac{1}{2}}^{n}}{\frac{1}{2}(r_{j}^{n}+r_{j-1}^{n})} \right] \left( \frac{V^{n}}{\rho_{0}} \right)_{j-\frac{1}{2}} \right\}. \end{split}$$

,

3. Conservation of mass

$$V_{j+\frac{1}{2}}^{n+1} = \frac{\rho_0}{m_{j+\frac{1}{2}}} \left[ \frac{(r_{j+1})^d - (r_j)^d}{d} \right]^{n+1}$$
$$r_j^{n+1} = r_j^n + U_j^{n+\frac{1}{2}} \Delta t^{n+\frac{1}{2}}.$$

4. Calculation of velocity strains

$$(\dot{\varepsilon}_1)_{j+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{U_{j+1}^{n+\frac{1}{2}} - U_j^{n+\frac{1}{2}}}{r_{j+1}^{n+\frac{1}{2}} - r_j^{n+\frac{1}{2}}},$$

$$(\dot{\varepsilon}_2)_{j+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{U_{j+1}^{n+\frac{1}{2}} + U_j^{n+\frac{1}{2}}}{r_{j+1}^{n+\frac{1}{2}} + r_j^{n+\frac{1}{2}}},$$

 $\dot{\varepsilon}_2 = 0$  for d = 1.

5. Calculation of stresses

(a) Stress deviators

$$(s_1)_{j+\frac{1}{2}}^{n+1} = (s_1)_{j+\frac{1}{2}}^n + 2\mu \left[ (\dot{\varepsilon}_1)_{j+\frac{1}{2}}^{n+\frac{1}{2}} \Delta t^{n+\frac{1}{2}} - \frac{1}{3} \left( \frac{V^{n+1} - V^n}{V^{n+\frac{1}{2}}} \right)_{j+\frac{1}{2}} \right] (s_2)_{j+\frac{1}{2}}^{n+1} = (s_2)_{j+\frac{1}{2}}^n + 2\mu \left[ (\dot{\varepsilon}_2)_{j+\frac{1}{2}}^{n+\frac{1}{2}} \Delta t^{n+\frac{1}{2}} - \frac{1}{3} \left( \frac{V^{n+1} - V^n}{V^{n+\frac{1}{2}}} \right)_{j+\frac{1}{2}} \right] (s_3)_{j+\frac{1}{2}}^{n+1} = - \left[ (s_1)_{j+\frac{1}{2}}^{n+1} + (s_2)_{j+\frac{1}{2}}^{n+1} \right].$$

b) Pressure equation of state  

$$P_{j+\frac{1}{2}}^{n+1} = A(\eta_{j+\frac{1}{2}}^{n+1}) + B(\eta_{j+\frac{1}{2}}^{n+1})E_{j+\frac{1}{2}}^{n+1}$$

6. Von Mises yield condition

$$(s_1^2 + s_2^2 + s_3^2)^{n+1} - \frac{2}{3}(Y^0)^2 = K^{n+1}$$

If  $K^{n+1} \leq 0$  the material is within the elastic limit. If  $K^{n+1} > 0$  multiply the stress deviators by  $\sqrt{2/3}Y^0/\sqrt{s_1^2 + s_2^2 + s_3^2}$ .

7. Artificial viscosity

(

$$q_{j+\frac{1}{2}}^{n+\frac{1}{2}} = C_0^2 \rho_{j+\frac{1}{2}}^{n+\frac{1}{2}} (U_{j+1}^{n+\frac{1}{2}} - U_j^{n+\frac{1}{2}})^2 + C_{\mathrm{L}} a \rho_{j+\frac{1}{2}}^{n+\frac{1}{2}} |U_{j+1}^{n+\frac{1}{2}} - U_j^{n+\frac{1}{2}}|.$$

Calculate only if  $U_{j+1}^{n+\frac{1}{2}} < U_j^{n+\frac{1}{2}}$  and  $(V_{j+\frac{1}{2}}^{n+1} - V_{j+\frac{1}{2}}^n) < 0$ . Here  $a = \sqrt{P/\rho}$ , where P is the local pressure and  $C_0 = 2$ ;  $C_{\rm L} = 1$ .

8. Energy equations

The change in the internal energy,  $\Delta E$ , is composed of a hydrodynamic component and a distortion component:

$$\Delta E = -(P+q)\Delta V + \Delta Z.$$

The change in distortion energy,  $\Delta Z$ , is

$$\left(\Delta Z\right)_{j+\frac{1}{2}}^{n+\frac{1}{2}} = V_{j+\frac{1}{2}}^{n+\frac{1}{2}} \left[s_1 \dot{\varepsilon}_1 + (d-1) s_2 \dot{\varepsilon}_2\right]_{j+\frac{1}{2}}^{n+\frac{1}{2}} \Delta t^{n+\frac{1}{2}},$$

where

$$s_1^{n+\frac{1}{2}} = \frac{1}{2}(s_1^{n+1} + s_1^n)$$
 etc

The total internal energy, E, is

$$(E)_{j+\frac{1}{2}}^{n+1} = \left(\frac{E^n - \left\{\frac{1}{2}[A(\eta^{n+1}) + \underline{P^n}] + \bar{q}\right\}[V^{n+1} - V^n] + \Delta}{1 + \frac{1}{2}[B(\eta^{n+1})][V^{n+1} - V^n]}\right)$$

where

$$\bar{q} = \frac{1}{2}(q^{n+\frac{1}{2}} + q^{n-\frac{1}{2}}).$$

This equation assumes that the equation of state has the form

$$P = A(\eta) + B(\eta)E.$$

9. Time steps

$$\begin{split} \Delta t^{n+\frac{3}{2}} &= \left. \frac{2}{3} \frac{\varDelta r^{n+1}}{\sqrt{a^2 + b^2}} \right|_{\text{min over } j}, \\ \Delta r^{n+1} &= r^{n+1}_{j+1} - r^{n+1}_{j} \end{split}$$

where a is the local sound speed and

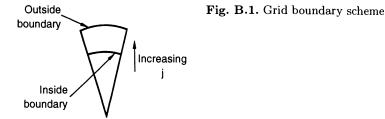
$$b = 8(C_0^2 + C_L) \Delta r^{n+1} \left(\frac{\dot{V}}{V}\right)^{n+\frac{1}{2}};$$
  

$$b = 0 \quad \text{if } \frac{\dot{V}}{V} \ge 0.$$
  
If  $\Delta t^{n+\frac{3}{2}} > (1.1) \Delta t^{n+\frac{1}{2}}, \text{ use } \Delta t^{n+\frac{3}{2}} = (1.1) \Delta t^{n+\frac{1}{2}}$   
 $\Delta t^{n+1} = \frac{1}{2} (\Delta t^{n+\frac{3}{2}} + \Delta t^{n+\frac{1}{2}}).$ 

### **B.3** Boundary Conditions

At an outside regional boundary J (Fig. B.1)

$$\phi_{J}^{n} = \frac{1}{2} \rho_{0_{J-\frac{1}{2}}} \left( \frac{r_{J-r_{J-1}}^{n}}{V_{J-\frac{1}{2}}^{n}} \right)$$
$$\beta_{J}^{n} = \left[ \frac{(\Sigma_{r})_{J-\frac{1}{2}}^{n} - (\Sigma_{\theta})_{J-\frac{1}{2}}^{n}}{\frac{1}{2}(r_{J}^{n} + r_{J-1}^{n})} \right] \left( \frac{V_{n}}{\rho_{0}} \right)_{J-\frac{1}{2}}.$$



At an inside regional boundary J

$$\begin{split} \phi_J^n &= \frac{1}{2} \rho_{0_{J+\frac{1}{2}}} \left( \frac{r_{J+1}^n - r_J^n}{V_{J+\frac{1}{2}}} \right) \\ \beta_J^n &= \left[ \frac{(\Sigma_r)_{J+\frac{1}{2}}^n - (\Sigma_\theta)_{J+\frac{1}{2}}^n}{\frac{1}{2} (r_J^n + r_{J+1}^n)} \right] \left( \frac{V^n}{\rho_0} \right)_{J+\frac{1}{2}}. \end{split}$$

For a free surface at j = J, the stresses are set to zero at  $J + \frac{1}{2}$  for an outside free surface or at  $J - \frac{1}{2}$  for an inside free surface.

#### **B.4 Opening and Closing Voids**

Many calculations require a routine that will permit a material to break or spall. An additional requirement is a routine that will allow two materials originally separated to join during the course of a calculation. Details of these routines are given below.

(a) Opening of a void

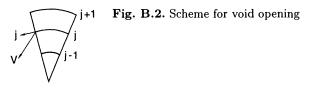
Let

$$P_j^n = \frac{1}{2} (P_{j+\frac{1}{2}}^n + P_{j-\frac{1}{2}}^n)$$
$$V_j^n = \frac{1}{2} (V_{j+\frac{1}{2}}^n + V_{j-\frac{1}{2}}^n).$$

If  $P_j^{n+1} < P_S$  and  $V_j^{n+1} > V_S$  where  $P_S, V_S$  are material constants, then introduce a new interface at j with the label V (Fig. B.2), with

$$r_V^{n+1} = r_j^{n+1}$$
  
 $U_V^{n+\frac{1}{2}} = U_j^{n+\frac{1}{2}}.$ 

In subsequent time steps, both j and V are treated as free surfaces where V is an outside boundary and j an inside boundary (refer to Sect. B.3). The criteria for the opening of a void given above are meant to serve as an example. In general, the criteria for the calculation of spall involve other parameters, stress gradients for example.



(b) Closing of a void

At the beginning of each time step, the new positions of  $r_V$  and  $r_j$  are calculated first, using a  $\Delta t$  that is 20% larger than the normal  $\Delta t$  for this time step. If  $r_V^{n+1} < r_j^{n+1}$ , calculate all grid points with the normal  $\Delta t$ . If  $r_V^{n+1} \ge r_j^{n+1}$ , solve for a new  $\Delta t$  as follows:

$$\begin{split} W &= U_j^{n-\frac{1}{2}} - U_V^{n-\frac{1}{2}}, \\ R &= r_j^n - r_V^n, \\ A &= \left[ \frac{(\Sigma_r^n)_{j+\frac{1}{2}}}{\phi_j^n} + \frac{(\Sigma_r)_{j-\frac{1}{2}}^n}{\phi_V^n} + (\beta_V^n + \beta_j^n)(d-1) \right], \\ B &= 2W + A\Delta t^{n-\frac{1}{2}}. \end{split}$$

Note: In the calculation of  $\phi$  and  $\beta$ , the subscript V refers to an outside regional boundary and the subscript j to an inside regional boundary, see Sect. B.3. Then

$$A(\Delta t^{n+\frac{1}{2}})^2 + B\Delta t^{n+\frac{1}{2}} + 2R = 0.$$

To solve for  $\Delta t^{n+\frac{1}{2}}$ :

$$\Delta t_i - \Delta t_{i+1} = \frac{A(\Delta t_i)^2 + B\Delta t_i + 2R}{2A\Delta t_i + B}$$

Start with  $\Delta t_i = 0$  and iterate until  $(\Delta t_i - \Delta t_{i+1}) = 0$ . Solve equations of motion for one time step with:

$$\Delta t^{n+\frac{1}{2}} = \Delta t_{i+1}$$
$$\Delta t^n = \frac{1}{2} (\Delta t_{i+1} + \Delta t^{n-\frac{1}{2}}).$$

Remove the free surface boundary condition on j and set

$$r_V^{n+1} = r_j^{n+1}$$

$$U_j^{n+\frac{1}{2}} = \frac{m_{j+\frac{1}{2}} * U_j^{n+\frac{1}{2}} + m_{j-\frac{1}{2}} U_V^{n+\frac{1}{2}}}{m_{j+\frac{1}{2}} + m_{j-\frac{1}{2}}},$$

where  ${}^{*}U_{j}^{n+\frac{1}{2}}$  is the velocity of interface j when the void closed.

Note: no attempt has been made to conserve energy after setting the velocity  $U_j$  to the value required to conserve momentum.