Appendices

A. Effect of a Second Shock on the Principal Hugoniot

Given an equation of state
P=ap+bu®+c(1+p)E,

where

b= 1, V = relative volume.

We wish to find how much a second compression from a point on the principal
Hugoniot differs from the principal Hugoniot.

The principal Hugoniot is obtained by substituting in the equation of
state the relation £ = Eq+1/2(P + Py)(V°? — V) where Ey = 0, P, = 0, and
V0 = 1. For the given equation of state this yields

b 2
P= (11'11—4—772 (principal Hugoniot). (A1)
For p < 0.25 we may write
acy 2 1 acy 3
P au+(b+2>,u +26(b+2>,u. (A.2)

To calculate the Hugoniot starting from the point (P1,V1,E1) on the
principal Hugoniot (Fig. A.1), we substitute in the equation of state the
relation E = Ey +1/2(P + P,)(V; — V). Let V; = 1 — 6, then E; = 1/2P,4.

We have

P+ P
P=au+b,u2+c(1+u)[E+ zl(Vl—V)]

é é
=a,u+b,u2+§[P1‘—/-+P(u—V) + P (u—%)}

J
=au+b,u2+§ [P(u—v> +P1p].
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Fig. A.1. Hugoniot from point (P, V1) on
/ principal Hugoniot

# principal Hugoniot.
(P, V9)

H

The Hugoniot for points above the initial point (Pl, Vi=1-4, FE = %é)

is

ap +bu? + sPip

P= (A.3)
5
1-5(k-7v)
Expanding, we get
1)
P = bu? fp ac - =
ap+bu + SPip+ —p(n- g
+bc2 6 +C2P 6 +cza 5\°
2# © % 2 1| M % 4 AW %
- A D (O D Bl
_a“+<b+2)“+2(b+2) 2 1y
_% 2£_ca2£+iai2_
2V TR Y T My
c c 1)
+§;LP1 [1 + 5 </J - V>:| .
Rearranging the terms and replacing P; by (A.2) we obtain
- acy 2, ¢ acy 3
P—a,u+(b+2)u +2(b+2),u
_c a6+(b+a0) é—faﬁ
o |°V 7 ) v Tty (A.4)
c acy 2y L4 %)
+2u[au1+(b+ 2),ul+2c(b+ 2),ul+...].

The underlined terms in (A.4) are the same as the principal Hugoniot.
Since % ~ p1 and c is usually between 1 and 2, equation (A.4) is very nearly
equal to the principal Hugoniot except for high order terms.
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B. Finite Difference Program
for One Space Dimension and Time

The partial differential equations and the corresponding finite difference equa-
tions are those used by the KO computer program. Time-dependent flows in
one space variable, r, are described for %zl), cylindrical (d = 2), and
spherical (d = 3) geometries. —

B.1 Fundamental Equations

quation of motion

pU 8%, I — T
—_—= d—1)—,
\% or + ) T
where U is the particle velocity.
_OConservation of mass
dM
a0

with M a mass element.
3. First law of thermodynamics

E — V[Slél + (d - 1)828'2] + (P + q)V =0.

4. Velocity strains

.U

&1 = arv

) U

Eg = —.
T

5. Stress deviators

.5‘1 22/1, (él—
S2 =24 (éz—

Note: Three stresses are identified here, even though they are not all re-
quired in order to maintain an analogy with the two and three dimensional
programs.

6. Pressure equation of state

P:a(n—1)+b(n—1)2+c(n—1)3+dnE

with n = 1/V = p/po and where a, b, ¢, and d are equation-of-state
constants.

w| =

ol =
oS <I<
~—

N——
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7. Total stresses

27- = '—(P+(I)+81
Yo =—(P+q)+s2.
8. Artificial viscosity
2
2p0 (OU 2 poa
P22 (A po

B_U
or

> Ar,

where C, and Cj are constants, a = 1/ P/p, and Ar is the grid spacing.

9. Von Mises yield condition

2
(53 + 53+ 53) — 2(VO)?

with Y the plastic flow stress.

B.2 Finite Difference Equations

1. Mass zoning

me. . =P (Toz+1)d - (T?)d
Ut B VA d

plane: d=1
cylindrical: d =2
spherical: d=3

where pg is the equation-of-state reference density and V4 the initial rela-

tive volume.
2. Equation of motion

nt3 n-—3 Atn n n n(an
U= 5 (254 — (B07,] + A (87)a - 1),
where
(ZF)j41 = [_(Pn +qn 1) -}-s?]ﬂl ,
2
(g = [P+ hasg]
no_ _1_ r;l+1 ,,.;1 T? —T?—l
¢]—-2[P0]+%< ‘/],:L% >+P0]_%( ‘/]n_% )
g = _]_- (ZT)J+1 (20); +3 (K)
’ 2 é( ]+1+T ) pPo it
N (Zr)? 1 (20)1__ (V">
20y +771) P /iy )
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. Conservation of mass

(rj)"l]n+l ’

Vn+1_ po  [(rje1)? -
m d

J+3

n+t i 1
r;‘“ =77 +U; A

. Calculation of velocity strains

n+ 4 n+3
1 U.,2-U "2

(él)n+§ _ _J+!1 J
Jj+3 n+y  n+z
Tj¢1 — 75
n+3 n+3
(& n+d U]+1 +Uj
52)j+1 =171
3 n+2 + n+3
Tji+1 TT;
"éy=0ford=1.

. Calculation of stresses

(a) Stress deviators

n+l __ n - \AFE A+l 1 (yrtl_yr
(s1)jry = (su)jiy +20 [(E%é’ AT -3 (T— i+

= -
_

1 Vn+1 _ynr
n+1l __ n . +1
(s2)jfy = (s2)fyy +20 [(E INCLALRE (WL
(sa)7} = = [0 + (23]

b) Pressure equation of state
(
Pn+l A(nn+1) +B( n+1)En+1.

s T J+3

Von Mises yield condition
2
(82 4+ 52 4+ s2)"H — g(YO)2 = K"t

If K™*t1 < 0 the material is within the elastic limit. If K**1 > 0 multiply

the stress deviators by 1/2/3Y?//s? + s2 + s2.

. Artificial viscosity

n+ n+1 n+ n+ 3 n+i n+ 1
H_f C2p ]+2( Ut U 2 10y GPJ+1 U -U T
Calculate only if U]:f < U"+2 and (V"+1 V1) <0.Herea = \/P/p,
2

where P is the local pressure and Cy = 2; C’L =1.

Energy equations

The change in the internal energy, AF, is composed of a hydrodynamic
component and a distortion component:

AE = —(P + q)AV + AZ.
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The change in distortion energy, AZ, is

1 1 1
(AZ)"T2 = V2 [s16) + (d — 1)sp69)" T 2 At
1+3 J+3

it+3
where
n+i _ 1 n+1 n
s, = —2—(31 +s7) etc.

The total internal energy, E, is

(E)! = E" — {3[AY) + Prl+ g VRt -V + A
i+s 1+ B+ [vn+t — v

where
1=+ )
This equation assumes that the equation of state has the form

P = A() + B(n)E.

<9. Time steps

At"+% B 2 Ar""‘l

B g\/a2 + b2

n+l _ n+l _  n+l
Ar =1l T

)
min over j

where a is the local sound speed and

v n+3
b = 8(CZ + CL)Arn+! (-‘7> ;

<<

b=0 if — >0.
If At"+3 > (1.1)At"E | use At"H3 = (1.1)Atn+3

AT = Z(ATE 4 AP,

[N

B.3 Boundary Conditions

At an outside regional boundary J (Fig. B.1)

¢7} = <pPo 1
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Outside Fig. B.1. Grid boundary scheme
boundary

Increasing
j
Inside
boundary

At an inside regional boundary J

1 T T
¢7} = §p01+% <—W_

J+3

n o (2’”)7.;4-% - (29)T}+% %6
bi = l %( jl (_)J+%'

r +T.7Il+1) Po

For a free surface at j = J, the stresses are set to zero at J + % for an outside
free surface or at J — % for an inside free surface.

B.4 Opening and Closing Voids

Many calculations require a routine that will permit a material to break
or spall. An additional requirement is a routine that will allow two materials
originally separated to join during the course of a calculation. Details of these
routines are given below.

(a) Opening of a void

Let
1
n 1
Vit =50 + VL)

If Pf“ < Ps and Vj"Jrl > Vs where Pg,Vs are material constants, then
introduce a new interface at j with the label V (Fig. B.2), with

rc+1 — ,,.;H—l
ntd 1
Uy = U
In subsequent time steps, both j and V are treated as free surfaces where
V is an outside boundary and j an inside boundary (refer to Sect. B.3).
The criteria for the opening of a void given above are meant to serve as
an example. In general, the criteria for the calculation of spall involve other
parameters, stress gradients for example.
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j+1  Fig. B.2. Scheme for void opening

v i1

(b) Closing of a void
At the beginning of each time step, the new positions of ry and r; are
calculated first, using a At that is 20% larger than the normal At for this

time step. If ript! < r}"“, calculate all grid points with the normal At. If

n+1

rptt > 7+ solve for a new At as follows:

1 1
—_ Tz gtz
W=U'"%-Uy ?,

R=r;‘—r"‘,,
) (B
Eies  200d | gy gyia )

ol oy

B = 2W + AAt"" 3,

A:

Note: In the calculation of ¢ and 3, the subscript V refers to an outside
regional boundary and the subscript j to an inside regional boundary, see
Sect. B.3. Then

A(At"5)2 4+ BAt™t + 2R = 0.
To solve for At"+3:

A(At,)? + BAt, + 2R
2AAt, + B

Start with At; = 0 and iterate until (At; — At;41) = 0. Solve equations of
motion for one time step with:

At = Aty
1
A" = 5 (At + A3,

At, — Atipy =

Remove the free surface boundary condition on j and set

n+l _  n+l
Ty =T
% n+—;- n+%
J - . . ’
mjyl +m]_%

1
where *U Jn *2 is the velocity of interface 7 when the void closed.

Note: no attempt has been made to conserve energy after setting the
velocity U; to the value required to conserve momentum.
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