Table 3.1. Equation of State Parameters

	Material	$ ho_0$	C	S	γ_0	k_1	k_2	k_3	e_{00}	e_{01}	e_{02}	e_{03}	e_{04}
1	Aluminum (Al)	2.78	0.53	1.34	2.00	7.906e - 01	1.325e + 00	2.130e + 00	-2.773e-03	-5.547e - 03	1.364 e - 01	2.495e-01	3.160e - 01
2	Gold (Au)	19.24	0.31	1.57	2.97	1.797e + 00	$2.981e\!+\!00$	$4.932 e \!+\! 00$	$-3.799 \mathrm{e} - 04$	$-1.128e\!-\!03$	$4.502 e\!-\!02$	$9.622\mathrm{e}\!-\!02$	$1.355\mathrm{e}-01$
3	Beryllium (Be)	1.85	0.80	1.12	1.16	1.184e + 00	1.975e + 00	2.944e + 00	-8.303e - 03	-9.632e - 03	$3.143\mathrm{e}-01$	4.772e - 01	5.360 e - 01
4	Copper (Cu)	8.93	0.39	1.49	1.99	1.386e + 00	2.749e + 00	5.113e + 00	-1.178e - 03	-2.344e-03	$7.529\mathrm{e}-02$	1.526e - 01	2.190e - 01
5	Magnesium (Mg)	1.74	0.45	1.26	1.42	3.511e - 01	6.376e - 01	1.051e + 00	-3.078e - 03	-4.371e - 03	$9.779\mathrm{e}-02$	1.684e - 01	2.107 e - 01
6	Niobium (Nb)	8.59	0.44	1.21	1.47	1.691e + 00	2.839e + 00	4.390e + 00	-8.054e - 04	-1.184e - 03	9.761e - 02	1.581e - 01	1.859e - 01
7	Nickel (Ni)	8.87	0.46	1.44	1.93	1.879e + 00	$3.588e\!+\!00$	6.430e + 00	-1.275e-03	-2.460e - 03	1.035e - 01	2.014e - 01	2.783e - 01
8	Lead (Pb)	11.35	0.21	1.46	2.77	4.774e - 01	7.329e - 01	1.122e + 00	-3.612e - 04	-1.000e-03	1.965 e - 02	3.966e - 02	5.219e - 02
9	Platinum (Pt)	21.42	0.36	1.54	2.40	2.773e + 00	5.235e + 00	9.556e + 00	-3.836e - 04	-9.206e - 04	6.362 e - 02	1.324e - 01	1.910e - 01
10	Steel	7.90	0.46	1.49	2.17	1.648e + 00	3.124e + 00	5.649e + 00	-1.340e - 03	-2.908e - 03	1.012e - 01	2.051e - 01	2.901e - 01
11	Tantalum (Ta)	16.65	0.34	1.20	1.60	1.941e + 00	3.110e + 00	4.669e + 00	-4.135e - 04	-6.617 e - 04	5.775e - 02	9.304e - 02	1.703 e - 01
12	Titanium (Ti)	4.53	0.52	0.77	1.09	1.234e + 00	1.220e + 00	1.146e + 00	-1.562e - 03	-1.703e - 03	1.353e - 01	1.390e - 01	1.011e - 01
13	Uranium (U)	18.95	0.25	1.56	2.20	1.172e + 00	2.368e + 00	4.535e + 00	-3.144e - 04	-6.916e - 04	3.017e - 02	6.377e - 02	9.490e - 02
14	Tungsten (W)	19.22	0.40	1.24	1.54	3.121e + 00	5.318e + 00	8.380e + 00	-4.070e - 04	-6.268e - 04	8.068e - 02	1.336e - 01	1.604 e - 01
Syı	nthetics and Comp	oounds											
15	Epoxy	1.19	0.27	1.49	0.00	8.869e - 02	2.142e - 01	4.414e - 01					
16	Lucite	1.18	0.23	1.82	0.00	$6.027 \mathrm{e} - 02$	1.968e - 01	5.166e - 01					
17	Polyethylene	0.91	0.29	1.48	0.00	7.653e - 02	$1.638e\!-\!01$	3.171e - 01					
18	Teflon	2.15	0.18	1.71	0.00	7.279e - 02	$2.275\mathrm{e}-01$	$5.651\mathrm{e}-01$					
19	Quartz	2.20	0.08	1.70	0.00	1.373e - 02	$4.050\mathrm{e}-02$	$9.803\mathrm{e}-02$					
20	Salt	2.17	0.35	1.34	0.00	2.704 e - 01	5.084 e - 01	8.769e - 01					
21	Water	1.00	0.17	1.92	0.00	2.723e - 02	1.045e - 01	3.011e - 01					
1)	$P = k_1 x + k$	$x_2x^2 +$	$k_3 x^3$	$+ \gamma_0 I$	E [M]	bar]; $x = 1$	$1-V; k_2$	= 0 for $x <$	0				
2)	$T = \frac{\frac{E}{\rho_0} - \varepsilon_0}{3R}$	[K]											
3)	$T_{\rm m} = T_{\rm m_0} V$	$\frac{2}{3} \exp \left[-\frac{2}{3} \exp \left[-$	$2\gamma_0(1$	1 - V)] [K]							
4)	$\varepsilon_0 = \varepsilon_{00} + \varepsilon_0$	$x_{01}x + x_{01}x + x_{01}x$	$\varepsilon_{02}x^2$	$+ \varepsilon_{03}$	$x^{3} +$	$\varepsilon_{04}x^4$ [Mba	${ m ar} \cdot { m cm}^3/{ m g}$						63

	Material	Y^0	Y_{\max}	β	n	b	h	T_{m_0}	μ_0			
1	Aluminum (Al)	2.900e - 03	6.800e - 03	1.250e + 02	1.000e - 01	8.000e + 00	6.200e - 04	1.220e + 03	2.760e - 01			
2	Gold (Au)	2.000e - 04	2.300e - 03	4.900e + 01	3.900e - 01	4.000e + 00	3.200e - 04	1.970e + 03	2.800e - 01			
3	Beryllium (Be)	3.300e – 03	1.200e - 02	8.100e + 01	2.200e - 01	2.000e + 00	2.600e - 04	1.820e + 03	1.510e + 00			
4	Copper (Cu)	1.200e - 03	6.000e - 03	3.600e + 01	4.500e - 01	3.000e + 00	3.800e - 04	1.790e + 03	4.770e - 01			
5	Magnesium (Mg)	1.700e - 03	5.000e - 03	7.000e + 03	1.000e - 01	1.000e + 01	4.800e - 04	1.570e + 03	1.650e - 01			
6	Niobium (Nb)	8.000e - 03	1.400e - 02	5.000e + 00	2.000e - 01	1.400e + 00	0.	1.750e + 03	3.770e - 01			
7	Nickel (Ni)	1.400e - 03	1.200e - 02	4.600e + 01	5.300e – 01	2.000e + 00	3.400e - 04	1.950e + 03	8.550e - 01			
8	Lead (Pb)	8.000e - 05	1.000e - 03	1.100e + 02	5.200e - 01	1.400e + 01	1.200e - 03	2.740e + 03	8.600e - 02			
9	Platinum (Pt)	3.000e - 04	3.000e - 03	2.000e + 04	2.000e - 04	3.000e + 00	1.400e - 04	2.870e + 03	6.370e - 01			
10	Steel	3.400e - 03	2.000e - 02	4.000e + 01	3.500e - 01	3.000e + 00	4.500e - 04	1.930e + 03	7.700e - 01			
11	Tantalum (Ta)	7.700e - 03	1.100e - 02	1.000e + 01	1.000e - 01	2.000e + 00	1.300e - 04	1.740e + 03	6.900e – 01			
12	Titanium (Ti)	7.100e - 03	1.500e - 02	7.800e + 02	6.500e - 02	1.000e + 00	6.200e - 04	1.230e + 03	4.340e - 01			
13	Uranium (U)	8.000e - 03	1.700e - 02	2.700e + 00	2.600e - 01	1.000e + 00	8.100e – 04	2.420e + 03	8.440e - 01			
14	Tungsten (W)	2.200e - 02	4.000e - 02	7.700e + 00	1.300e - 01	1.000e + 00	1.400e - 04	1.670e + 03	1.600e + 00			
1)	1) $Y = \left[Y^{0} (1 + \beta \varepsilon_{eq}^{p})^{n}\right] \left[1 + bPV^{\frac{1}{3}} - h(T - 300)\right] \text{ [Mbar]}$											
	a) $\left[Y^0(1+\beta\varepsilon_{\mathrm{eq}}^{\mathrm{p}})^n\right] \leq Y_{\mathrm{max}}$											
	b) $Y = 0$ for $T > T_m$											
2)	$\mu = \mu_0 \big[1 + bP$	$PV^{\frac{1}{3}} - h(T-3)$	00) [Mbar]									

 Table 3.2. Parameters for the Steinberg-Guinan constitutive model