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Credit for bringing robots to life is given to two individuals, Karel Capek and Isaac Asimov. In 1922,
Capek wrote a play called Rossun’s Universal Robots (RUR) describing how robots would turn on mankind
and eventually take over the world. In the 1940s, Asimov, who is credited with coining the term “robotics,”
freed us from a view of robots as malevolent beings, painting a view of robots as our helpmates, improving
our lives and making us more productive.

176.1 Robot Definition

The term “robot” is defined by The Robotics Industry Association as a “reprogrammable multifunctional
manipulator designed to move material, parts, tools, or specialized devices, through variable programmed
motions for the performance of a variety of tasks.” It consists of mechanical links, often in a serial chain
with one link grounded or attached to a frame, that are connected via revolute (i.e., hinge) or prismatic
(i.e., sliding) joints and actuated via gear trains or directly by electric motors or hydraulic or pneumatic
drives. A robot will generally include position sensors (such as potentiometers or optical encoders) and
may include contact, tactile, force/torque, proximity, or vision sensors. At its distal end, a robotic
manipulator is typically fitted with an end-effector, such as a gripper, enabling it to accomplish desired
tasks. An example of an industrial robot is the Case Packer from CAMotion, Inc. shown in Figure 176.1.

176.2 Robot Control Problem

The fundamental control problem in robotics is to determine the actuator signals required to achieve
the desired motion and specified performance criteria. It the robot is to perform a task while in contact
with a surface, it is also necessary to control the contact force applied by the manipulator. Although the
control problem can be stated simply, its solution may be quite complicated due to robot nonlinearities.
For example, because of coupling among links, the robot dynamics in a serial link robot design are
described mathematically by a set of coupled nonlinear differential equations, making the controls
problem challenging. The controls problem becomes even more difficult if the links exhibit flexibility,
and hence cannot be modeled as rigid.
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FIGURE 176.1 Case Packer Cartesian Robot. (Courtesy of CAMotion, Inc.)

To achieve the desired motion and possibly contact force characteristics, the planning of the manip-
ulator trajectory is integrally linked to the control problem. The position of the robot can be described
by a set of joint coordinates in joint space or by the position and orientation of the end-effector using
coordinates along orthogonal axes in Cartesian or task space. The two representations are related, that i,
the Cartesian position and orientation can be computed from the joint positions via a mapping (or
function) known as forward kinematics. The motion required to realize the desired task is generally
specified in Cartesian space. The joint positions required to achieve the desired end-effector position and
orientation can be found by s mapping known as the fnverse kinematics. This inverse kinematics problem
may have more than one solution, and a closed-form, solution may not be possible, depending on the
geometric configuration of the robot. The desired motion may be specified as point to point, in which
the end-effector moves from one point to another without regard to the path, or it may be specified as
a continuous path, in which the end-effector follows a desired path between the points. A tragjectory
planner generally interpolates the desired path and generates a sequence of set points for the controller.
The interpolation may be done iu joint or Cartesian space,

Some of the robot control schemes in use today include independent joint control [Luh, 1983];
Cartesian-space contro} [Lub et al., 1980}; and force control sirategies such as hybrid position/force
control [Raibert and Craig, 1981] and impedance control [Hogan, 1985], In independent joint control,
each joint is considered as a separate system and the coupling effects between the links are treated as
disturbances to be rejected by the controller. Performance can be enbanced by compensating for rabot
nonlinearities and interlink coupling using the method of computed torque or inverse dynamics. In
Cartestan-space control, the error signals are computed in Cartesian space and the inverse kinematics
problem need not be sclved. In this chapter, independent joint control is analyzed in depth to provide
insight info the use of various controllers for joint position control, Information on force control schemes
can be found in the references cited above as well in Bonitz [1995].

176.3 Basic Joint Position Dynamic Model

Many industrial robots operate at slow speeds, employing large gear reductions that significantly reduce
the coupling effects between the links. For slowly varying command inputs, the drive systern dominates
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the dynarmics of each joint and each link can be considered rigid. Under these conditions, each joint can
be controlled as an independent system using linear system control techniques. Figure 176.2 is a model
of a single actuator-link model, representative of a single link robot. The model includes an effective
inertia, J,

J=J,+r%, (176.1)

where v is the gear ratio of the joint, [, is the motor inertia, and , is the link inertia. The model also
includes an effective damping coefficient, B, and a motor armature inductance and resistance, L and R,

espectively. The relationship between the motor input voltage and the rotational speed is given by the
second-order differential equation,

v o (RB KXY K,
@{t)+(JR+BL)d(t )+ R—?L --—f~w)m(ﬂm~~f~-f:,,,11x} (176.2)

where e, (£) is the motor input voltage, m(#) is the link angular velocity or rotational speed, and K, is a

metor torque constant (torque per current ratio). Assuming zero initial conditions and defining the
Laplace transformations,

sfof)}=al)  Sfal)=El)

the transfer function between the input voltage, E (s) and the link rotational velocity, £2(s), can be
written as

Kt
Ofs) §a
- {,i} = L . (176.3)
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than the deatmcai “‘dynamics,” that is, the effect of L is small in coraparison to the other system parameters.

Assurning pegligible L in equation (176.3), the IOHG’WL ng first-order transfer function can be developed:
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Defining the open-locp joint time constant, T, as
R
T, = -w—’%{;—- (176.5)
RB+| —L
VL
and the open-loop link gain as
(176.6)
hqm.xon {176.4) can be rewritten ag
Q) K,
_"_Um (176.7)
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The assumption of the motor inductance being small, resulting in negligible electrical dynamics is
considered reasonable if the negative real part of the single pole from the electrical dynamics is approx-
imately three times larger than the negative real part of the mechanical dynamics. This is known as the
dominant pole theory, and is valid for most motors. However, for small motors, such as those used in
micro-electromechanical systems (MEMS) devices, this assumption may not be valid.

Fguation (176.7) provides a relationship between joint angular velocity and input motor voltage, and
is a useful first-order model for velocity control. However, for most robot applications, position control
rather than velocity control is desired. For the typical case of lower velocities, the dynamics of the
individual joints can be considered to be decoupled. Recognizing that the position of the joint is the
integral of the joint velocity, a transfer function between position, ©(s), which is the Laplace transform
of 8(r), and the input voltage can be developed:

e [ \i - 2(‘55 1Y K :
G(s)= f}(,s’\ :“ll “i"} Ko Ko (178.8)
' ﬁ:‘ﬂ 32 }:m{b S * SQ\Tﬁ';'*—}}

where G(s) is the plant transfer function for the single link, Bquation (176.8) is a model for position
control, and the same simple dynamics can be used to model a variety of systerns including high precision
machine tools, which are essentially multiaxis Cartesian robots [Kuarfess and Jenkins, 2000].

176.4 Independent Joint Position Control

ill\ b\}uil},}
position control can be a success m} strategy. Two daﬁxn.& control methods — pzﬂpmtmnal derwatw
(PD) control and proportional integral derivative (PID) control — are typically implemented. This
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FIGURE 176.3 Generalized closed-loop systern configuration.

section develops design strategies for both types, and, for completeness, considers the even simpler
proportional (P) controller. Figure 176.3 represents the closed-loop feedback configuration for the single
link model, where G(s) represents the link or plant dynamics given by Equation (176.8), K{s) represents
the controller that is to be designed, and H(s) represents the feedback sensor dynamics. In general, the
relationship between the desired angular position, B (s}, and the actual angular position of the link, ®(s),
is given by Black’s Law (19344, 1934b),

(s)= ) ' (176.9)

The angular ervor, E(s), is given by the difference between the desired angle and the actual angle. The
transfer function between @,(s) and E(s) is given by

G s S — (176.10)

power to drive the system. In this

The controller typically includes a power amplifier that provides 1l
example, the output of the c,a“tftwﬁe" is a voltage, that is, the power arnplifier’s function is to provide
sufficient current at the desired voltage to drive the systern. Saturation occurs when the desired input
voltage exceeds the maximum amplifier voltage output capacity, or when the product of the voltage and
current exceeds the amplifier’s rated power capacity. The effect of saturation is ignored in the following
examples. Finally, the controller output voltage can be related to the input command signal via the
following transfer function,

(176.11)

1. 3

Equation {176.11) can be used to determine the motor conynand voltage as a function of the desired

Definition of Specifications

Specifications are generally provided to ensure that the desived systern behavior is achieved. The speci-
fications define the closed-loop system characteristics, and the usual practice is to tune the controller
gains to achieve the desired performance. For this exercise, a 2% settling time, £, and a maximum percent
overshoot, My, are specified. These two quaantities (an d others) are mwzﬂuad in the typxcal second-order
response shown in Pigure 176.4. They defin response of the closed-loop system
described by a second-order model of the f

(176.12}
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FIGURE 176.4 A typical second-order response.

where {; and @, are the desired damping ratic and (undamped) natoral frequency, respectively, and

are related to the desived overshoot My, and desired settling time 1, of the target closed-loop system

by the expressions,

(176.13)
PR - (176.14)
('"dﬁ)?d
where the latter is a conservative approximation of the settling time. Solving for {, in Equation (176.13)
yields
T
_ | lmeM,) (M)
== N == (176.15)
|7 +In(2M ) J1t +In(2M )

From Equations (176.14) and (176.15), m,,; can be expressed as

4[n* +In(2M,)
\/_ ( Pl (176.16)

From Equation (176.12), the characteristic equation that defines the system response is given by
2,95 2 L)
st 4200 s +wl, =0 (176.17)
o T e IS T B s N P . NP - TR o IO SRS T SR T S
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shown in Figare 176.5 for a variety of desired damping ratios, {, Nominally, for joint position control
a damping ratio of 1, corresponding to a critically damped system, is desired. This places both poles in



Robots and Controls 176-7

o
D‘?sz’@ poies T k i
out ‘ﬂd: y o ‘\;
AN \ ﬂ
N \
/ @ \' e
™ nd ‘«\ By = m’m/i ¢
LY ?‘3\@ A
{ AT \ V
P |
T N \
Poles for {y> 1 g Dnet )
ke K‘ |
A ~ Poles for {y =0
) e - |
B R A/’
Poles for 0 < {y< 1

FIGURE 176.5 Pole locations for desired closed-loop system dynamics.

the same location on the real axis, and yields the fastest system response without overshoot. For generality
in the control design examnples, the variables (; and w,; are used rather than specific values for these
variables [Nagurka and Kurfess, 1992].

Proportional (P} Control

In P control, the simplest analog control algorithm, the control signal is proportionally related to the
error signal by a constant gain, K, Thus, the transfer function for a proportional controller is a constant,

K{s)=K, (176.18)
The closed-loop transfer function of the single actuator-link system with a proportional controller is

KK, (176.19)
s (YT s+ KK, T,

F 4
m

Gor {’: } =

from Equations (176.8), (176.9), and (176.18). The characteristic equation for the transfer function given
in BEquation (176.19) 1s

H

ST s+ KK, /T, =0 (176.20)

4

With one free design parameter, the proportional gain, K, the target cdosed-loop system dynamics will
be virtually impossible to achieve. By equating the actual closed-loop characteristic Equation (176.20)
to the desired closed-loop characteristic Equation (176.17),

YT, )+ KK, /T, =0=5 +20 0 _s+0, (176.21)

only @, can be specified divectly, giving the value of K, by
K,=w, ,—" (176.22)

(found by equating the coefficients of s7). Once m,, has been chosen, [, is fixed to be
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= L (176.23)
2w, T,

It is usefuld to investigate the locati The pole locations
on the s-plane can be compuied by solving for s in Equation (176.21) via the quadratic formula,

ion of the closed-loop poles as s function of
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Two values of K, provide insight. When K = 0, the closed-loop poles are located at

s=1 1 : (176.25)

corresponding to the open-loop pole locations, When E,, is selected such that the radical in Equation

176.24 vanishes,

the two roots are located at

mj?
the closed-loop poles of the system are complex conjugates with a constant real parf of - j/{

Increasing the proportional gain beyond 1/ (AiK ’}"m) only increases the imaginary component of the
poles; the real part does not change. A graphmai portrayal of the pole locations of the system under
proportional control is shown in the root locus plot of Figure 176.6. The poles start at their open-loop
positions when K, = 0, and transition to a break point at -1/ (zf ) when K, =1/{ (4K T ) After the

When 05K, i‘!./ \41»’ T 3}, the closed-loop poles of the system are purely real. When K, )1’ (4& n n,; s

mon
break point, th ey travel parallel to the imaginary axis with only their i mmbmary parts increasing while

their real parts remain constant at —1/ (7;’ V. It is clear from Figure 176,6 that only specific combinations
of @, and [, can be achieved with the pr npamﬁnal control configuration. Such relationships can be
observed directly via a variety of controls design tools for both single-variable and multivariable systerns
[Kurfess and Nagurka, 1993, 1994].

Proportional Derivative {PD) Control

To improve performance beyond that available by proportional control, PD control can be employed.
The dynamics for the PD controller are given by

K(s)=Ks+K, (176.28)
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FIGURE 176.6 Root locus for proportional control on a single link.

where the constants K, and K, are the proportional and derivative gains, respectively. Employing Black’s
Law with the PD controller, the closed-loop transfer function for the single actuator-link model is

Ky (Kps+K,)
T \
GCL(S} =

— Iﬂ; 1 (176.29)
C L+
sz+(——-—-—-”’ L +K K,/T
k T,n ) m P
located at

There are now additional dynamics associated with the zero (root of the transfer function numerator)

s

1l

P

-

D

(176.30)
These dynamics can affect the final closed-loop response. Ideally, the zero given in Equation (176.30)
will be far enough to the left of the system poles on the s-plane that the dominant pole theory applies.

{This would mean the dynamics corresponding to the zero are sufficiently fast in comparison to the
closed-loop pole dynamics that their effect is negligible.)

Expressions for K, and K, can be found by equating the closed-loop characteristic Equation (176.29),

(KK +1)
s‘+{“&f[’v—~Js+Kpr;Tm:0

"

(176.31)
to the target closed-loop characteristic equation that possesses the desired natural frequency and damping
ratio, Equation (176.17). Equating the coefficients of s? and solving for K, yields

— 2 )
K,=mw,, K,«
Similarly, equating the coefficients of §* and solving for K, vields

(176.32)
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This approach of solving for control gains is known as pole placement. As with all control design methods,
the gains derived using Equations (176.32) and (176.33) should be checked to ensure that they are realistic.

Figure 176.7 presents a typical root locus plot for a single actuator-link model using 2 PD controller
where the forward loop gain is varied. The location of the single zero (s=~K,/K ) can be seen on the
veal axis in the left of the s-plane. For this design, the zero dynamics will be insignificant in comparison
to the pole dynamics. It is noted that the break point for the root locus presented in Figure 176.7 is
slightly to the left of the break point in Figure 176.6 (s = ~1/2T ). Furthermore, the locus of the complex
conjugates poles is circular and centered at the zero.

Classical control tools such as the root locus are critical in control design. Without such tools the designer
could use the relationships given by Equations (176.32) and (176.33) to place the poles at any location.
However, the resulting location of the zero may have been too dose to the dosed-loop poles resulting in
system dynamics that do not behave as desired. This is described in detail in the following section.

Effect of Zero Dynamics

To demonstrate the effect of a zero, consider two systems that have the same damping ratios () and
natural frequencies (®,). The first system is given by

(176.34)

and the second system is

(176.35)

zero located at s = —m 7 for the system described by Equation (176.35). For a unit step input,

Cls)= : (176.36)
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the unit step responses of the two systems are

0% AT )
Ris)e—e @ ,.) 176.37
) s +20w s+ s wesn

il&
=9

2 2
s+ 1 5 1 w 1
Ryfs)=—5—r—" J*-)z 3 5 »)+ e 2(~) (176.38)
T+ dw s+elils ) S+ steils) P42l sto) s,

The difference between the two responses is the derivative term, corvesponding to the first term on the
right side of Equation (176.38):

The time domain responses for Equations (176.37) and {176.38}, respectively, are
L . »
rl(f,} =g ~—r—_-§:~: sm(m dt)«i»ms(m dt) (176.39)
and

o } = } Lmg s

AN

" 14
ij}ﬁin(mdi}+cos{wi,i) +$@~§mn: - } } (176.40)
j N8

|

S

[ .
@, =0 1= (176.41)
Several iterns are worth noting. First, Equations (176.39) and (176.40) are valid for 6 £ < 1. Second,

the difference between the two

{176.42)

which is the Imopulse response of the system given by Equation (176.34). For the initial transient of the
step response, the impulse response is positive and, therefore, adds to the overall system response. This
indicates that the overshoot may be increased, which is the case for the example shown in Figure 176.8
for w, = 1 radfs and { = 0.707. In Figure 176.8, the proportional term is the step response given by
Equation (176.39), the derivative term is given by expression (176.42), and the total response is given by
the sum of the two expressions in Equation (176.40).

From this example, the addition of the zero results in increased overshoot, The real part of the noles is
LY

s=Lo, =0.707 (176.43)
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Thus, the dominant pole theorem does not hold and the dynamics of the zero cannot be ignored. Again,
this is demonstrated by the increased overshoot illustrated in Figore 176.8.
Proportional Integral Derivative (PID) Control

A PID controller can be designed to provide better steady-state disturbance rejection capabilities com-
pared to PD or P controllers. The form of the PID controller is given by

K, K "+Ks+K R
s S - A S 8 (176.45)
5 5

For the single actuator-link model, the dosed-loop transfer function using a PID controller is given by

K

7_;’31{1(352 +K s+ K, )
G, (s) = ———2 — — (176.46)
53 + K;’f’:":ﬁ_{;g 5‘/‘ + f{:ﬂgf 54 :g/f.ff‘;igl,
" 2‘;; )"K'l

The closed-loop dynamics are third ovder and, in comparison to the second-order PD case, the control
design has an extra gain that must be determined and an additional pole, located at s = —d, added to the
target dynamics. The closed-loop characteristic equation,

. (KK _+1), KK, KK .
§ | R et Ry L g (176.47)

T T T

ke m i

is equated to the new target closed-loop characteristic equation,

(s> +20 © s+0? s+d)=0 (176.48)
%\ 4 nd i |
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A@ with the PD controller, the location of the zeros in Equat 6.46) as well as the extra pole at s =

“af}zﬂh have a negative real parts that are at least three times as negative as the target closed-loop

ible root locus pi

e ﬂ.j oy yn By B ,Mﬁ‘sbx 1a
YA pOLe Can DE SE8I O 1S yead axis

left in the s-pldune. As wxm the PD control dssxgn, the gains used for achieving the target dynamics must
be well understood. It is easy to pick gains that move both zeros and the extra pole far to the left in the
s-plane. However; it should be noted that the further left the dynamics are shified in the s-plane, the
faster they become, influencing less the overall response of the system. However, to increase the response
speed of these dynamics requires higher gains that ultimately result in higher power requirements (and
the possibility of instability). As such, while designing for higher gains is rather straightforward mathe-
matically, the implementation may be limited by the physical constraints of the system.

Unlike the locus of the complex conjugate poles for the model employing PD control (Figure 176.6),
the locus here need not be circular, Also, given the increased number of closed-loop system parameters
{including the control gains and design parameters such as 4, the sensitivity of the closed-loop dynamics
to changes of these parameters may be important and should be investigated. For example, if the
proportional gain changes a small amount (which is bound to happen in a real system), the impact in
the overall system performance must be understood. Mathematically, sensitivity can formally be shown
to be a complex guantity (having both magnitude and angle), and a variety of techniques can be used
to explore sensitivity to parameter changes [Kurfess and Nagur ka, 1994].

is varied, The

176.5 Method of Computed Torque

If the robot is a direct-drive type without gear reduction or if the command inputs are not slowly varying,
the control scheme of the previous section may exhibit poor performance characteristics and instability

E
o

may even result. One method of compensating for the effects of link coupling is to use feed-forward

L Th
i

ance cancellation

o

he disturbance torque is computed from the robot dynamic equation, surn-

1 vector-matrix form as

= DB +C(8,8)+G(8)+ F(B) (176.49)

where 7 is the 1 X 1 vector of joint torques (forces), D{8) is the n X n inertia matrix, C(8, B)isthen x 1
vector of Coriolis and ceﬂmmga} torques (forces), G(8) is the n X 1 vector of torques (forces) due to
gravity, and F(8) is the n X 1 vector of torques (forces) due to friction. In the feed-forward disturbance
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cancellation scheme, the right side of Equation (176.49) is computed using the desired value of the joint
variables and injected as a compensating “disturbance.” If the plant is minimum phase (has no right-half
s-plane zeros), its inverse is also fed forward to achieve tracking of any reference trajectory.

Another version of computed-torque control, known as inverse dynamics control, involves setting the
control torque to

1= DO +C(8,8)+G(B)+ F(8) ; (176.50)
which results in 6 =v, a double integrator sy m. The value of v is now chosenas v = 8 +K (ﬁl ~8)+

K (8, - 8)where subscript d denotes desired i” s results in the tracking error, e =6, ~ 8 wham aatzsﬁm‘
P YA %‘
B+K e+K,e=0 (176.51)
The gains K, and K, can be chosen for the desired error dynamics (damping and natural frequency). In
g D ¥ % ¥

general, computed-torque control schemes are computationally intensive due 1o the complicated nature
of Equation (176.49), and require accurate knowledge of the robot model [Bonitz, 1995].

176.6 Cartesian Space Control

The basic concept of Cartesian space control is that the error signals used in the control algorithm are
computed in Cartesian space, obviating the solution of the inverse kinematics. The position and orien-
tation of the robot end-effector can be described by a 3 X 1 position vector, p, and the three orthogonal
axes of an imaginary frame attached to the end effector. (The axes are known as the normal (), sliding
{s), and approach {(a) vectors.) The control torque is computed from

T=D(6)8+C(8,0)+G(8)+ F(6) (176.52)

=&, +K e+ K e~ 7(8,6)0] (176.53)

where J{8) is the manipulator Jacobian that maps the, joint velocity vector to the Cartesian velocity vecior,
T iT £, is the 2 % 1 position error vecior, ¢, is the 3 X

% is the 6 x 1 desired acceleration vector, e=[e’e
a p b

1 orientation error vector, K, is the 6 X 6 pa::sm‘w»ieﬁm‘se matriz of velocity gains, and K, is the 6 X 6

]

position and orientation of the end-effector is

positive-definite matrix of posifion gains. The act

computed from the joiat positions via the forward kinematics. The pos ‘tm;‘z EYTor 18 COMmy g uted from e,

= 8, — 8 and, for small error, the orientation error is computed from ¢, = Hnxn, +5xs, ]. The
d o= 1 4 ]

control law of Equations (176.52) and (176.53) results in the Cartesian error equah 1,

e+ Ko+ Ke=0 (176.54)

The gain matrices K, snd K, can be chosen to be diagonal to achieve the desired error dynamics along
each Cartesian direction [Spong and Vidyasagar, 1989].

The Cartesian space controfler has the disadvantage that the inverse of the Jacobian is required, which
does not exist at singular configurations. The planned trajectory must avoid singularities, or alternative
methods such as the SR psevdoinverse [Nakamura, 1991] must be used to compute the Jacobian inverse
[Bonitz, 1995].

Defining Terms

Cartesian or task space — The set of vectors describing the position and orientation of the end-effector
using coordinates along orthogonal axes, The position is specified by a 3 X 1 vector of the
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coordinates of the end-effector {rame origin. The orientation is specified by the 3 % 1 normal,

sliding, and approach vectors describing the directions of the orthogonal axes of the frame.
Alternately, the orientation may be described by Euler angles, roll/pitch/vaw angles, or an axis/
angle representation.

Forward kinematics ~— The function that maps the position of the joints to the Cartesian position and

orientation of the end-effector. It maps the joint space of the manipulator to Cartesian space.

Inverse kinematics — The function that maps the Cartesian position and orientation of the end-effector
to the joint positions. It is generally a one-to-many mapping, and a closed-form solution may
not always be possible.

Jacobian — The function that maps the joint velocity vector to the Cartesian translational and angular
velocity vector of the end-effector x = J(8)8.

Singular configuration — A configuration of the manipulator in which the manipulator Jacobian loses
full rank. It represents confignrations from which certain directions of motion are not possible
or when two or more joint axes line up and there is an infindty of solutions to the inverse
kinematics problern.
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