

EECE 143

DIGITAL ELECTRONICS LABORATORY
CLASS NOTES

M A R Q U E T T E U N I V E R S I T Y

J. Christopher Perez

COPYRIGHT © 2002 WRITTEN AND COMPILED BY J. CHRISTOPHER PEREZ AND BRUCE
HOEPPNER ALL RIGHTS RESERVED .

1

T A B L E O F C O N T E N T S

Course expectations, goals and Digital Design Laboratory Basics 3
EECE 143 Laboratory Notebooks Format............................ 4
Laboratory Notebook Rules ... 6
Sample Pre-Lab.. 7
Agilent 54622D Mixed Signal Oscilloscope Tutorial........... 9
C.A.D.E.T. II Tutorial..11
LOGIC FAMILY SUMMARY..15
CMOS 4000 Series...15
EMITTER-COUPLED LOGIC (ECL).................................16
LOGIC IC NAMING..16
CMOS OUTPUTS..19
DC Electrical Specifications..20
OTHER DIGITAL IC SPECIFICATIONS........................23
DC SPEC TEST CIRCUITS..24
BREADBOARDING DIGITAL CIRCUITS....................26
Digital Troubleshooting Check List28
SWITCH INTERFACING: SPST, SPDT with Pull-up Resistors 30
SEVEN-SEGMENT DISPLAYS..31
74LS47 BCD-TO-7-SEGMENT DECODER...................34
Clocks & Oscillators ...37
Multivibrators (Sequential Circuits) ..37
LM555 Timer IC..38
Crystal Oscillators ..39
Selection Of Variable Resistors..40
Schmitt Gates..41
Schmitt Inverter Clock ...42
Power-On Reset...43
ONE SHOTS...44
Flip-Flops...46
Counters ...46
Mod-N Counters..46
Frequency Division Using Counters.......................................46
Programmable Logic Devices...48
PLD Advantages:..48
Simple Generic PALs..49
CUPL PLD Compiler...53
Combinational Logic Implementation ..53
Sequential Circuit Implementation of Programmable Logic............53
Compiling your PLD Program...55
PROGRAMMING YOUR PLD..56
68HC11 Introduction and Features.......................................63
68HC11 Registers ..64
68HC11 Memory Map..65
68HC11 I/O Registers ...66
M68HC11 Integrated Circuit..67
68HC11 Instruction Set Introduction....................................70
68HC11 Instructions...74

2

Branch if EQual ...78
Load Accumulator...80
BUFFALO Monitor Quick Users Reference.......................83
AS11 Top-10 Boo-Boos...87
AS11.EXE Reference ...88
68HC11 Parallel Input & Output..92
Handshake I/O Subsystem...92
Simple I/O...92
Simple Strobe (Handshake)...92
Port B code..92
Port B timing ..93
Port C code..93
Port C timing ..94
Full-Input Handshake Mode...94
Full-Output Handshake Mode..94
Centronics Parallel Printer Port...94
Signal Definitions ...96
68HC11 Timing Functions..98
68HC11 Analog-to-Digital Converter..................................101
68HC11 ADC Features..101
Hardware Interface...102
Analog Data Inputs...102
Reference Voltage Inputs..102
Single Channel Operation, One Time..102
Multiple Channel Operation, One Set...103
Multiple Channel Operation, Continuous.....................................103
Sampling and Conversion Speed ..103
Filtering, Averaging, and Data Processing103
STOP and WAIT Modes...103
68HC11 Interrupts ..105
COUNT.A11...106
COUNT.LST..107
COUNT_BR.LST..108
DELAY1M.LST...110
DELAY5U.LST...112
INNOTOUT.A11...113
INNOTOUT.LST...114
MULT4BIT.LST..115

3

I N T R O D U C T I O N T O D I G I T A L
D E S I G N L A B O R A T O R Y

COURSE EXPECTATIONS, GOALS AND DIGITAL D ESIGN
LABORATORY BASICS

There are several goals of EECE 143 Digital Electronics Laboratory. First, the student
will gain experience in digital design and assembly. Secondly, The student will learn to test
and troubleshoot digital circuits. The student will learn to design digital circuits using
discrete integrated circuits in combinational as well as sequential circuits. The third goal of
this course is use programmable logic devices as an alternative to discrete logic. The fourth
goal is to learn how to use microprocessors for control and other applications. A fifth goal is
to give the students experience in communicating their designs through presentations and
technical report writings.

The laboratory is divided into four main sections. The first four laboratory experiments

involve learning to use the equipment in the laboratory to troubleshoot discrete
combinational and sequential circuits. Students will use the theory of combinational and
sequential design that they learned in Digital Electronics (EECE112) and design, build and
troubleshoot with actual components.

The second section of this course will allow students to design circuits using

programmable logic devices as alternatives to discrete integrated circuits. The students will
learn to write source code to program the PLDs and compile the code using a software
application called CUPL. Students will learn to write code using Boolean equations, truth
tables and state machines.

The third portion of the course involves the use of microprocessors. Students will learn

to use the Motorola 68HC11EVB microcontroller. The 68HC11 is programmed using
assembly language of the 6800 instruction set with extensions. The student will learn to
program the 68HC11 in assembly language to perform several applications.

The final portion of Digital Design Laboratory is a design project in which students will

be able to use the knowledge they have acquired throughout the course to design a circuit
that will perform some function. The students are expected to present their design and
complete a written technical report.

The remainder of this chapter explains the particular rules for setting up the laboratory

notebooks. Chapter 2 contains a brief tutorial of the two main equipment used in digital
laboratory, the Agilent 54622D Mixed Signal Oscilloscope and the CADET training board.
The class notes go further to present discrete logic components and the different types of
logic families. Chapter 3 discusses the various specifications and troubleshooting
techniques. Chapter 4 contains information for inputting and outputting data for digital
circuits, particularly push-buttons and DIP switches with pull-up resistors. A main portion
of the chapter covers 7-segment displays as output devices. Chapter 5 presents various

4

designs of digital clock circuits including one-shots, crystal oscillators and other circuits.
Chapter 6 covers counters, flip-flops, and shift registers. Programmable Logic Devices and
techniques for programming them with CUPL are covered in Chapters 7 and 8. Chapter 9 is
used as an additional reference for the Motorola 68HC11 microcontroller. More information
may be found on the class website. http://www.eng.mu.edu/~perezjc/eece143/index.html

EECE 143 LABORATORY NOTEBOOKS FORMAT

Each students is required to maintain his/her own laboratory notebook. The notebooks
should be Engineering & Science Notebooks available at the campus bookstore.

Notebooks will be inspected for pre-laboratory work at the beginning of the laboratory
period.

The following image shows how each notebook
should be labeled.

EECE 143
Digital Electronics

Laboratory Notebook

Student Name

Semester and Year
Lab Section 200X

5

The first page should have a table of
contents that will be filled out as each
student completes the lab.

The remaining pages will contain the
Experiments section of the notebook.
Students should number all pages at
the start of the class.

Students should write on the back sides
of the pages only when necessary for
making corrections or attaching code.

Experiments section should follow the following format:
Title of Experiment
Lab Group Names
Date Laboratory is performed
General Pre-Lab Questions And Problems.
Schematic Diagram Or Circuit Diagram With Parts List
Data Tables And Results should include Empty Columns For Measured Data
Most data tables are included in the Laboratory Manual. Students should complete
the Theoretical or Expected Data columns. If no data table is provided, students
should provide their own data table.
Troubleshooting Summary
If the students experience any problems while building and testing the circuits, they
should log any troubleshooting they performed and how they solved their problems.

Table of Contents
Experiment #, Title, Date, Page #s

6

LABORATORY NOTEBOOK RULES

The following are some rules to be observed regarding the laboratory notebooks.

1. Use Engineering Notebook (National 33-610, MU bookstore)
2. Do not remove any pages.
3. Number all pages right away.
4. Use pen only NOT pencil. Blue or black only. Not red or green.
5. Use 2 cm minimum right margin.
6. Print neatly.
7. Cross out errors with a single line or X a whole section.
8. Tape any additions to an original page in the notebook.

(PSpice plots, computer printouts, Data sheets, photocopies of other pertinent data,
figures, ...)

9. All original hand-done work must be done on original notebook pages.
10. Label figures with "Figure 1-1", for Figure 1 in Experiment 1, ...
11. Label tables with "Table 1-1", ...
12. Put all data in tables.
13. Have TA initial data when taken after each experiment section.
14. Give notebook to TA or place in the drop-box by the designated time on the day before

your lab period. Notebooks turned in should contain the completed post-lab work for
previous lab as well as a new entry for this week's pre-lab

15. Notebooks might not be returned at the end of the semester.

7

SAMPLE PRE-LAB

The following is a sample of how Pre-Lab should be entered in notebooks. Data tables
can be placed at the end of the Lab entry if you are using the pre-made data tables included
in the Laboratory Manual.

Combinational Boolean Implementations
Experiment #1

Bruce Hoeppner & J. Christopher Perez

8 JAN 2002

Part 1:
Part 1A. AND-OR Implementation A = w'x + wx'

w

x

A

U1

U1

U2

U3

U3

1 2

3 4

1

2
3

4

5
6

1

2
3

S1

S2

I1

Figure 1-1A: Schematic for A = w'x + wx'

Function Part# IC# Vcc GND
AND 74HC08 U1 14 7
OR 74HC32 U2 14 7
NOT 74HC04 U3 14 7

Part 1A Data

 Theoretical Measured
W x A A
0 0 0
0 1 1
1 0 1
1 1 0

Part 1A Comments

(parts 1B, and C here!)

8

Part 1D Decoder*-NAND Implementation: D(w,x,y,z) = S (0,3,8,11)

DU2

1

2
6

w S1

x S2

y S3

z S4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

15

13

5

4

9

4

1

U1

23

21

22

20 D
C
B
A

I4

Figure 1-1D: Decoder*-NAND Implementation D(w,x,y,z) = S (0,3,8,11)

Function Part# IC# Vcc GND
Decoder 74HC154 U1 24 12
NAND 74HC20 U2 14 7

(remainder of Part D)

(rest of Experiment 1 Parts)

Troubleshooting Summary

1. Several ICs were not connected to power rail +5V. (Part1, 2)

2. Check for connections to IC enables. 74HC154's G1* and G2* were left off of pre-lab

schematics. ICs don't work when not enabled.

9

C H A P T E R 2 D I G I T A L E QU I P M E N T
A N D C O M P O N E N T S

A BRIEF TUTORIAL ON EQUIPMENT AND COMPONENTS

AGILENT 54622D MIXED SIGNAL OSCILLOSCOPE TUTORIAL

The Agilent 54622D Mixed Signal Oscilloscope Tutorial is one of the main

equipment to be used in the digital electronics laboratory. This tutorial is a brief
introduction to the Oscilloscope and several of its features.

The 54622D MSO has 2 Analog Channels + 16 Digital Channels which can be used
simultaneously. It has a100MHz Bandwidth with a sample Rate of 200MSa/s and a
Memory Depth of 200MB/ch.

More information is available in the Agilent 54622D Mixed Signal Oscilloscope
User’s Guide which is available at the course website.

CONTROL LAYOUT

The control layout of the front panel is shown in Figure 2-1. The user interface
consists of the display, disk drive, Softkeys, Intensity Control, Analog and Digital
inputs and controls, Horizontal Controls, Run controls, Measure keys, Waveform
keys, Trigger Controls and Utility key.

10

Figure 2-1Agilent 54622Dmixed Signal Oscilloscope Front Panel

1. Display – Shows the onscreen menus and waveforms
2. Softkeys – allow for different options that change depending on use
3. Intensity Control – allows user to modify the intensity of the display
4. Floppy Disk Drive - allows user to save data and screen dumps to diskette
5. Power Switch – push to turn on and off
6. Horizontal Controls – Use to change the horizontal (time) settings of the display. The

left scroll dial is used for changing the scale, the smaller right scroll dial is used to shift
the waveform left or right

7. Run Controls – Press Run/Stop to start and stop repetitive mode. Press Single to use
single mode acquisition.

8. Measure keys – Press Cursors to use X Y markers to measure manually. Press
Quickmeas to have the MSO perform quick calculations. These buttons bring up a soft
menu for use with softkeys.

9. Waveform – Acquire and Display buttons bring up additional softmenus
10. Trigger Controls – Edge button sets the positive or negative edge trigger setting. The

scroll dial is used to change the trigger level.
11. Autoscale key – Allows the MSO to automatically scale the display
12. File keys – Save/Recall and QuickPrint buttons allow you to change settings for saving

to diskette
13. Utility key – displays softmenus for various utilities
14. Analog Channel inputs/Controls – used to change the vertical (voltage) settings of the

two analog channels. The math key allows the user to perform several mathematical
functions on the waveforms

15. Digital Channel inputs/Controls- used to change settings for the 16 digital channels

11

Refer to the Agilent 54600-Series Oscilloscopes User’s Guide for a more in depth look at
the controls of the 54622D MSO.

C.A.D.E.T. II TUTORIAL

The CADET II training board is one of the main equipment to be used in the digital
electronics laboratory. The various features of the CADET include a +5V power
supply, a 1.3V-15V variable power supply, a –1.3V- -15V variable power supply, 12.6
VAC power supply, 8 channel Logic Monitors (LED indicators), Logic Probe, BCD
– 7-Segment LED Display, 8Ohm Speaker, two SPDT switches, 1KΩ
potentiomenter, 10KΩ potentiometer, eight logic switches, one BNC connector,
two debounced pushbutton switches, and a variable function generator.

Figure 2-2CADET II Board

The power switch is located on the left rear side of the CADET board. The rocker
switch lights up to show power is supplied to the board.

12

POWER SUPPLIES

The Power Supply Connections are located at the upper right corner of the CADET
board. Connections can be made using banana plugs or by connecting wires from the
banana jacks to the terminal strips located at the top center of the CADET board. The
terminal strips are connected horizontally and can be used and power and ground rails for
circuits

At the top of the C.A.D.E.T. board above the power supply connections are two voltage
adjustment knobs. One is marked +V and controls the 1.3V-15V power supply. The
other is marked –V and controls the -1.3V- -15V power supply. Most experiments will be
using 5V so you will not have to make any adjustments.

NOTE: Always double check your power connections. Applying the wrong
voltage may damage your components.

 You may also connect your circuits using banana plug test leads with the banana
jacks located at the upper right corner of the C.A.D.E.T. board. Each is labeled
according to the power supply which it is connected.

LOGIC INDICATORS

The eight logic indicators on the right side of the C.A.D.E.T. board allow you a
convenient way to test the logic level of certain signals in your circuits. The LED-Is
consist of two horizontal rows of LEDs. The top row of red LEDs indicate a logic
level of 1. The bottom row of green LEDs indicate a logic level of 0. To the left of
the LED-Is is a block of connectors consisting of 2 columns of eight tie points.
Each row of tie points is connected to a pair of red and green LED-I. The top row
is connected to the first LED-I on the left.
On top of the LED-I connections is a toggle switch marked +5 and +V. The voltage
supply for the LED-Is is changed by toggling this switch. Since most experiments
use +5V, keep this switch at the +5 setting.

Note: Always check which voltage setting the LED-I switch is set, an incorrect
setting may cause unwanted results.

Below the LED-I connections is another toggle switch marked TTL and CMOS.
Due to different output characteristics of TTL and CMOS ICs, this toggle switch
must be set accordingly to the type of chips being used.

13

LOGIC PROBE

Below the LED-I, connections to Logic Probe is found. Connect the Vcc to 5
Volts and connect a wire to the INPUT. You can use the wire to probe your circuit
to determine if a signal is pulsing, logic level 0 or logic level 1.

BCD 7 SEGMENT LED DISPLAY

Below the Logic Probe is a BCD – 7 Segment LED Display. You can connect 2
4-bit BCD numbers and display them on the 7 segment displays.

8Ω SPEAKER

Below the LED-I, connections to an 8Ω Speaker is found. The connections to
the speaker are found in a connection block to the left. The top two rows are tied
together. Similarly the bottom two rows are internally connected. To use the speaker
connect a top tie point to your source and a bottom tie point to ground (GND).

BNC CONNECTOR

The BNC connector is located on the lower left corner of the C.A.D.E.T. board.
The center is already connected to ground. All rows of the connection block are tied
to the BNC connector.

SPDT SWITCHES

On the bottom of the C.A.D.E.T. board can be found the two SPDT switches. A
connection diagram on the C.A.D.E.T. board shows the three leads of each SPDT
switch. When the switch is in the UP position the top and the middle leads are
connected. When the switch is in the DOWN position the middle and the bottom
leads are connected.

POTENTIOMETERS

 There are two potentiometers 1KΩ and 10KΩ located at the bottom of the
C.A.D.E.T. board. The center adjustable lead on each pot is connected to 4 tie
points. The two fixed leads of each pot has 2 connections each. As you turn the
knob in either direction, the resistance between the center lead and the one you are
moving towards will decrease. The resistance between the center lead and the lead
you are moving away from will increase.

14

LOGIC SWITCHES

 Located at the bottom of the C.A.D.E.T. board are eight toggle switches. The
voltage level of the logic switches are controlled by a separate toggle switch labeled
+5 and +V. By setting to +5, the voltage level is set to 5V or TTL mode. By setting
to +V the voltage level is set to +V/CMOS mode.

CAUTION: Always check the value of the +V voltage supply before setting to
CMOS mode.

The logic switches will output a logic 0 or 0 volts when in the down position.
They will output a logic level 1 or +5V when in TTL mode or +V when in CMOS
mode.

DEBOUNCED PUSHBUTTON SWITCHES

 The debounced switches are called “debounced” because they consist of the
physical mechanical switch as well as additional circuitry to eliminate the multiple
switch closure normally found when operating mechanical switches (called
bouncing). Each switch has eight tie points of two different types. Four of the points
are marked “NC” which means normally closed. These points are normally closed to
ground and become open when the button is pressed. The other four points are
marked “NO” which means normally open. These points are normally open and
become connected to ground when the button is pushed.

FUNCTION GENERATOR

 The function generator can produce sine, triangular, TTL and square waves from
0.1 Hz to 100kHz. The type of signal is changed by selecting sine, triangular or
square wave on a slide switch. Connections are made through a set of connection
points. The first column of connection points are TTL output only. The remaining
three columns output the selected signal. The amplitude is adjustable (except when
using the TTL function) by a vertical slide switch marked AMP. The frequency is
varied by using a vertical slide switch marked FREQ. This sets the frequency
between 0.1 and 1.0. The frequency can further be set by adjusting two other
switches, a multiplier from Hz to kHz, and a multiplier from 1, 10, and 100.

NOTE: Always check power and ground connections when troubleshooting.

NOTE: Always turn off power when making connections to your circuits.

15

LOGIC FA MILY SUMMARY

Various families of Logic Integrated Circuits (ICs) exist on the market however the families
mainly used in Digital Electronics Laboratory are the TTL and the High-Speed CMOS families.
Some spec of the other families are included for comparison.

Transistor-Transistor Logic (TTL)

+ wide variety of functions and capabilities
+ good availability
+ low cost
+ easy to use
+ positive logic (theoretically simple)
+ high speed

- uses 5 Volt power supply
- consumes more power than other families
- typical active-low inputs and outputs

High-Speed CMOS (HC)

High Speed CMOS is not in the TTL family. However, it is designed to be functionally
similar. Generally HC can be used in place of LS with a fanout restriction of 1.

+ very low power (HC µW vs TTL mW)
 one CMOS transistor of the pair is always off
 zero gate current
 no internal resistors
+ variable supply voltage

74HC 2.0 to 6.0 Volts (use three, or four, 1.5 V batteries)
74C 3.0 to 15.0 Volts
CD4000 series 2.0 to 15.0 Volts

+ TTL replacements
+ high noise margin
+ can use pull-down or/and pull-up resistors
- handling
- speed

CMOS 4000 SERIES

CMOS stands for Complementary Metal Oxide Semiconductor. Gates are made
with pairs of MOS transistors (one N-channel, one P-channel). Typically, one of the
two transistors is "off". This accounts for extremely low power consumption.
Another advantages of 4000 series CMOS is a high noise margin. CMOS gates have
high input impedance. Fanout is limited more by capacitive rather than by DC
loading.

16

EMITTER-COUPLED LOGIC (ECL)

ECL gates have lower propagation delays (higher speeds) than TTL. Gates are
designed so transistors do not saturate when they turn on. Logic 1 (High) is -0.8 V.
Logic 0 (Low) is -1.8 V. Typically the circuit is powered with Vcc = GND, and Vee
= -5.2V. A modern ECL NOR gate is Motorola's M10KH100. ECL noise
immunity (0.25 V) is lower than TTL, or CMOS.

Table 2-1 Logic Family Speed/Power Comparison

Device 7400 74LS00 74ALS00 74HC00 74C00 CD4011 M10KH100
Speed 10 ns 9.5 ns 5 ns 9 ns 50 ns 65 ns 1 ns
Power 10 mW 2 mW 1 mW 25 µW 10 nW 10 nW 25 mW

 speed = tpd (typical) power = Vcc * Icc (per gate)

LOGIC IC NAMING

mm74xxxnnnrp
Mm Manufacturer
74 or 54 Temperature Range
Xxx Technology Type
Nnn Logic Function
R Revision
Pp Package Type

Manufacturer -- mm

SN Texas Instruments, Motorola
DM National Semiconductor
None Signetics
Pinouts will be the same for different manufacturers. Specifications may be slightly
different.

Temperature Range -- 74 or 54

74 Standard (Commercial) 0 to 70 °C
54 Military -55 to 125 °C

Pinouts may be different for the same function, and technology type, but different
temperature range.

Technology Type -- xxx

TTL includes different types of integrated circuits with the same logic function.
These differences are based on the type and size of transistors and diodes, and
resistor values. These variations primarily affect the power and speed of the device.
The following table summarizes speed and power using standard TTL as the base.
High Speed CMOS is not in the TTL family. However, it is designed to be
functionally similar. Generally HC can be used in place of LS with a fanout
restriction of 1 LS device. Others: AC, ACT, BCT

17

Table 2-2 IC Technology Types

Type Speed Power Name
 std. std. Standard
H high high High Power
L low low Low Power
LS std. low Low Power Schottky
S high high Schottky
ALS high low Advanced Low Power Schottky
AS v. high std. Advanced Schottky
F v. high high Fast TTL
HC std. v. low High Speed CMOS
HCT std. v. low High Speed CMOS with TTL Inputs
C low v. v. low CMOS -- TTL Pinouts

Logic Function -- nnn

Two to four digits identifies the logic function performed by the IC.

Table 2-3 Example TTL Parts

Part Number Description
7400 Quad 2-Input NAND Gate
74LS00 Quad 2-Input NAND Gate
74LS01 Quad 2-Input NAND with Open-Collector Output
74LS32 Quad 2-Input OR Gate
74LS74A Dual D-Type Positive-Edge-Triggered Flip-Flop with

Preset and Clear
74LS138A 3:8 Decoder/Demultiplexer
74LS161A 4-Bit Synchronous Counter with Direct Clear
74LS636 8-Bit Parallel Error Detection and Correction Circuit

with 3-State Output

Revision -- r

Improvements to an IC that correct slight errors or glitches have a letter suffix. The
basic function of the circuit has not changed. The previous device becomes
obsolete. Possible example: 74LS161 vs 74LS161A

18

Packaging -- pp

Table 2-4 Texas Instruments TTL Packaging

Pp Type Package Name Comments
J DIP Ceramic Dual-In-line Package 14 to 20 pins, 0.3" centers
JW DIP Ceramic Dual-In-line Package 24 pins, 0.6" centers
JT DIP Ceramic Dual-In-Line Package 24 pins, 0.3" centers
N DIP Plastic Dual-In-Line Package 14 to 40 pins, 0.3" or 0.6"
W FP Ceramic Dual Flat Package 14 to 24 pins, surf. mount
D SOP Small Outline Package 0.244" wide
DW SOP Wide Small Outline Package 0.410" wide, 16 or more pins
FK LCC Leadless Chip Carrier square, surface mount only

Other TI packages: JD, JG, P

19

C H A P T E R 3 D I S C R E T E L O G I C
C O M P O N E N T S

INTEGRATED CIRCUIT COMPONENTS

CMOS OUTPUTS

The same logic function may be found in one of three output types.

Standard Outputs. standard CMOS output

+ direct connect of logic stages
+ fast

Open Drain

Logic 0 outputs are the same as totem-pole.
Logic 1 outputs are "passive".
+ wired logic
+ change Logic 1 output voltage
+ drive large loads

- requires pull-up resistor
- slower than totem-pole

Three-State Outputs

Output can be logic 1, logic 0, or 3-stated. 3-stated is a
high impedance state, open circuit, no connection.

+ multiplexing
+ disconnect an output from the circuit
- more complex, extra input needed

Vcc

A

B

Y

Figure 3-1High Speed CMOS NAND

A
B

Y

Figure 3-2 High Speed CMOS NAND

Vcc

Y

G

X

Figure 3-3 HC 3-State Inverter

20

DC ELECTRICAL SPECIFICATIONS

Data sheets give "worst case" values.
"Worst case" is the manufacturers guarantee of performance.
The worst case can be a minimum or maximum depending on which would be less desirable.

Typical values are sometimes given. These should be used for comparisons only. Worst
case values should be used when designing circuits.

VOLTAGES

A complete understanding of Boolean Algebra, and Digital Theory, can be achieved with the
ideal inputs of logic 1 = 5 V, and logic 0 = ground. Real circuits provide a range of input
and output voltages to allow for loss and noise.

High = most positive voltage in a binary system

Low = most negative voltage in a binary system

Positive Logic assigns a logic 1 to the most positive voltage.

Input Voltages

Vil low level input voltage
 maximum voltage guaranteed to be accepted as a logic 0 at an input (min)

Vih high level input voltage
 minimum voltage guaranteed to be accepted as a logic 1 at an input (max)

Output Voltages

Vol low level output voltage
maximum output voltage with input conditions applied that, according to the product
specifications, will establish a logic 0 at the output. (max)

Voh high level output voltage
minimum output voltage with input conditions applied that, according to the product
specifications, will establish a logic 1 at the output. (min)

21

Table 3-1 Voltage Comparisons

V 74HC00A* 74HCT00** 74LS00
spec min typ max min typ max min typ max
Vih 3.15 2.0 2.0
Vil 1.35 0.8 0.7
Voh 4.4 4.0 2.7 3.4
Vol 0.1 0.4 0.3 0.5

* @ Vcc = 4.5V, Iout < 20 uA** @ Vcc = 4.5V, Iout = 4.0 mA

NOISE MARGIN

Voltage ranges for inputs and outputs are a desirable characteristic in digital circuits.
Assume device A outputs a logic 1 as 5.0 V, and device B recognizes 5.0 V as logic 1. If
noise causes the 5.0 V to be reduced to 4.8 V, what logic level does B see? Having ranges
for inputs and outputs allow for fluctuations without causing errors.

A B

Noise margin is defines as the worst case difference between the low level input and output
voltage, or between the high level input and output voltage. A large noise margin is
desirable.

NM = smaller of: { [Voh - Vih], [Vil - Vol] } for a specific device.

For a 74HC00, NM = smaller of { 0.4 V, 0.4V } == 1.25V

For a 74LS00, NM = 0.2V

22

LOGIC GATE CURRENTS

Ideal devices require zero current to operate, yet, can supply infinite current to a load. Real
devices deviate from the ideal. TTL devices are made with NPN transistors (Ic = βIb).
TTL inputs will have some required input drive current. Also, a real device cannot supply
infinite current. There are some limits. IC currents are always specified as being into the
device. Negative signs indicate current is leaving the device.

Input Currents

Iil low-level input sink current
maximum current into an input when a low-level voltage is applied to that input.

Iih high-level input drive current
maximum current into an input when a high-level voltage is applied to that input.

Output Currents

Iol low-level output sink current
maximum (manufacturer guaranteed) current into an output when input conditions indicate
the output should be low (logic 0).

Ioh high-level output source current
maximum current into an output when input conditions indicate the output should be high
(logic 1).

Note: Although specified as a maximum, a specific devices may sink or source more current
and still be within the correct voltage range. (i.e. Iout = 1 mA, for Vout = 3.0 V)

Table 3-2 Current Comparisons

MA MC74HC00A* 74HCT00A* 74LS00
Spec min typ max min typ max min typ max
Iih .000

1
 .0001 0.02

Iil -
.000

1

 -
.0001

 -0.4

Ioh -4.0* -4.0* -0.4
Iol 4.0* 4.0* 8.0

* @Vcc = 4.5 V, Voh @ 4.0 V, Vol @ 0.26 V, Temp < 25 °C
Actual maximum output current is determined by desired output voltage.

23

OTHER DIGITAL IC SPECIFICATIONS

Propagation Delay

In idea logic devices, an input change, results in an immediate output change. In real
devices, the output change is delayed. This delay is called propagation delay (tpd).
Propagation delay is due to transistor switching, and circuit capacitance. tpd is a measure of
the speed of a device. It is measured as two different values: propagation delay, high-to-low
output, (tphl), and propagation delay, low-to-high output, (tplh). Measured with respect to
the output irregardless of device function. Other propagation delay specifications related to
switching from a logic value to or from a 3-state condition.

Other timing specs: rise time (tr), setup time (tsu), hold time (th), and minimum clock pulse
width (tpw or tw).

Maximum Clock Frequency fMAX

Flip-flops and other real clocked devices has a maximum clock frequency. fMAX is the
highest clock speed at which the manufacturer guarantees the device will operate correctly.
Note: Like many specs, an actual device may work at higher frequencies in a prototype, but,
you should not exceed specs when designing for mass production.

Higher CMOS, and HC clock frequency increases power consumption.

POWER REQUIREMENTS

Real ICs consume energy to operate. This energy is not used for external useful work. It is
wasted (?) as heat. Typically, we would like this to be as small as possible. Power
requirements vary the most between logic families. IC power consumption is measured as
Icc * Vcc with outputs open. A 5 W power source can supply ≈100 74LS ICs at 50 mW
each. Allowing for a margin of error, a limit of 20 is reasonable. Note: Each LED in a
circuit requires about the same amount of current as an IC. Decrease the number of ICs by
one for each LED.

Vcc Ranges

TTL ICs are typically powered from a 5.00 V, +/- 5% source. The specified range of
operation for a 74LS00 is 4.75 V to 5.25 V. Correct operation is not guaranteed outside of
this range. HC devices can operate with a large range of supply voltages. Typiclly: 2.0 V <
Vcc < 6.0 V. Two, 3, or 4 AA batteries can supply several ICs.

Localized, momentary brown-outs can occur on circuits during high-speed operation, or
high-current switching. Decoupling capacitors help to relieve this problem. One 10 - 100
µF capacitor per board, and one 0.1 µF per IC is sufficient.

24

DC SPEC TEST CIRCUITS

Rload

Rin

5V

5V

Vih Test Circuit

Rload

Rin

5V

Vil Test Circuit

I
I

Rload
5V

5V

Iih Test Circuit

Rload

5V

Iil Test Circuit

A
A I

I

Rload
5V

5V

Vol, Iol Test Circuit

Rload

5V

Voh, Ioh Test Circuit

I

I

Figure 3-4 Digital IC Test Circuits

25

V

Voh
(data
book)

Ioh (exp.) I

Determine Experimental Ioh

V

Vol
(data

book)

Iol (exp.) I

Determine Experimental Iol
Figure 3-5Testing Curve Waveforms

26

BREADBOARDING DIGITA L CIRCUITS

SUGGESTIONS FOR SUCCESSFUL BREADBOARDING

1. Use a separate node rail for power and ground. Use the top line for +5 V, and the bottom
for ground.

2. Anytime an IC is inserted, immediately connect it to power and ground rails.

3. Insert ICs an logical order. Insert all ICs in with the same orientation. Good placement
reduces wiring complexity.

4. Cut wires to smallest usable size. Keep your wires short.

5. Change wire colors often. Try to use Red for +5 V, and Black for ground.

6. Highlight or somehow record on the schematics as connections are made.

7. Avoid alligator clips.

8. Label inputs and outputs using tape.

9. Connect discrete components directly to IC/nodes.

10. Do not twist resistor or capacitor leads to get exact values. Use a node on the breadboard.
(Typically, digital circuits do not need exact values.)

11. Break each circuit into simple blocks. A block consists of a single IC or logic level.
Assemble and test one block at a time.

12. Have one partner wire the circuit while the other records data. If something goes wrong,
switch places. Sometimes it is easier to find someone else's mistake.

13. Alternate assembler and recorder positions after each experiment section so both partners
get experience.

14. Split up very large circuits so that each partner assembles a section.

15. Keep power and clock lines short. Especially between boards.

16. Use decoupling capacitors in large circuits, or at high clock rates.

27

LOGIC PROBES

If access to neither a logic probe nor a CADET board with Logic Indicators are available,
the student may want to build a logic probe using the following design.

+

+

to +V

to GND

black

red

PROBE LM339

HIGH

RED

LOW

GREEN

R1

R2

R3

R4

R5

R6 R7330 220

8 9 10 11 12

GND

Vcc
4

5

6

7

2

1

3

Vp

Vref1

Vref0

Figure Error! No text of specified style in document. -6Simple Logic Probe

Operation
Comparator (LM339)
When +V > -V ==> Vout = Vcc
When +V < -V ==> Vout = GND

Resistor Selection
Design R1, R2 to bias probe between Vil and Vih when not connected.
Design R3, R4, R5 to provide reference voltages to comparator so that pin 5 is at Vih and
pin 6 is at Vil.
Design R6, R7 to maximum LED brightness for given comparator.

28

DIGITAL TROUBLESHOOTING CHECK LIST

Use this check list to find the problem with your digital circuit.

DEFINITIONS

Block Diagram: A diagram in which the essential units of any system are drawn in the form
of blocks. Their relationships to each other are indicated by appropriately connected lines.
The path of the signal may be indicated by arrows.

Schematic: A complete circuit diagram including component identification, wiring
connections, and approximate component locations.

Identification:
 ICs: part number, chip number, pin descriptions, pin numbers.

 Resistors: value, tolerance, power rating if needed.

 Capacitors: value, tolerance, max voltage.

 Other: as required.

When a problem occurs with your circuit, try these steps one at a time.

POWER ON

1. Check power supply with DMM or Oscilloscope.
 Measure DC value and ripple on Vcc and ground.

2. Check power and ground to each IC. Use DMM, scope, or logic probe.

3. Check all constants. Constants include: Chip enables, Presets, and Clears, and any other
IC inputs that do not change during the operation of the circuit.

4. Check clock. Measure magnitude and frequency. Check with scope to detect any defects.

5. Make sure all IC inputs are connected somewhere. See #3. All unused inputs should be
connected to power or ground (use pull-up resistors if needed). Make sure unused IC
outputs are left open-circuit. (Inputs of unused gates of an IC do not need to be connected.)

29

POWER OFF

6. Check schematic with actual circuit. Compare the schematic component by component
with the circuit. Are correct pinouts used? Not all digital ICs have Vcc, and GND at
opposite corners!

7. Check continuity between components. Use an Ohmmeter to measure the resistance
from pin to pin.
 R = 0 (0 - 0.9 ohms) is OK
 R = infinity (>1 ohm) is bad
 Measure resistance with the DMM set at the lowest ohm range. Do not use on "AUTO".
Put the ohmmeter probes directly on the IC pins, do not push the probes into breadboards.
If you have a DMM with audio continuity, use it!

8. Check components one at a time. Remove component from circuit.
 Start with the "warmest" components first, then check:

 Resistors: Measure value.
 Capacitors: Measure value and check polarity.
 Diodes: Is it in backward? Check with curve tracer or DMM.
 Transistors: Check with curve tracer or DMM.
 ICs: Check with appropriate IC tester, or try it
 in a "verified" circuit, or build a simple test circuit.

If a component is bad, check component specs with circuit specs. Was the component bad
to start with, or was it damaged in the circuit?

DO NOT REPLACE ASSUMED BAD COMPONENTS UNTIL VERIFIED BAD!

DO NOT REPLACE BAD COMPONENTS UNTIL CIRCUIT IS DETERMINED TO
NOT HAVE CAUSED THE DAMAGE!

9. Check schematics with block diagram. Verify pinouts with a data book. Check for
correct bottom or top view of pinouts. Verify that specific ICs perform the desired block
function.

10. Check design process. Verify design and concepts. Question and review all
assumptions.

POWER ON

11. Check the functional blocks. Isolate the circuit into functional blocks as described by
block model. Connect the block's inputs to logic switches, and the
block's outputs to LED indicators. Perform a truth table verification of the block. Repeat
for all blocks in the design.

30

C H A P T E R 4 I N P U T A N D O U T P U T
INPUT AND DISPLAY DESIGN FOR DIGITAL CIRCUITS

SWITCH INTERFACING: SPST, SPDT WITH PULL-UP RESISTORS

Interfacing an SPST to TTL Inputs

Use a pull-up resistor configuration.

0) Logic 0: Close Switch

Vx is directly grounded.
∴ Logic 0

1) Logic 1: Open Switch

To be a logic 1 at the input Vx ≥ Vih.

∴ assume Vx ≥ Vih
 5.0 V - VR ≥ Vih KVL: Vx = 5 V - VR
 5.0 V - Ir*Rp ≥ Vih Ohm's Law: VR = Ir * Rp
 5.0 V - Iih*Rp ≥ Vih Worst Case: Ir = Iih, (Ir ≤ Iih)
 5 V - 40 µA*Rp ≥ 2.0 V Iih = 40 µA, Vih = 2.0 V
 5.0 V ≥ 2.0 V + 40 µA*Rp
 5.0 V - 2.0V ≥ 40 µA*Rp
 3.0 V ≥ 40 µA*Rp
 3.0 V ÷ 40 µA ≥ Rp
 75,000Ω ≥ Rp

∴ Rp ≤ 75 kΩ
Rp ≤ 75 kΩ is the maximum value. Can Rp be 0Ω? ... 100 Ω.
↑ Rp ↓ power wasted in Rp when the switch is closed.
↓ Rp ↑ the noise margin for logic 1.

Example: Select Rp = 10 kΩ Vx = 5.0 V - (40 µA * 10 kΩ) = 4.6 V

SPDT Switches
SPDT Switches and buttons are easier to use as logic inputs. Bouncing may also be a
problem.

5V

Rp

Ii
Vx

Ir

Figure 4-1 Switch with Pull-up Resistor

31

SEVEN -SEGMENT DISPLAYS

Seven-segment displays are used for decimal numeric displays. Seven light-emitting diodes
are arranged so that all ten digits (0 - 9) can roughly be displayed.

Table 4-1 7-Segment Table

Decimal 4-bit binary
w x y z

 seven-segment
a b c d e f g

0 0 0 0 0

1 1 1 1 1 1 0

1 0 0 0 1

0 1 1 0 0 0 0

2 0 0 1 0

1 1 0 1 1 0 1

3 0 0 1 1

1 1 1 1 0 0 1

4 0 1 0 0

0 1 1 0 0 1 1

5 0 1 0 1

1 0 1 1 0 1 1

6 0 1 1 0

1 0 1 1 1 1 1

7 0 1 1 1

1 1 1 0 0 0 0

8 1 0 0 0

1 1 1 1 1 1 1

9 1 0 0 1

1 1 1 0 0 1 1

Single digit 7-segment displays come in two main IC packages

32

1

2

3

4

5

6

7 8

9

10

11

12

13

14a

b

c

d

e

f

g

dp

14 pin DIP

1 2 3 4 5

678910

a

b

c

d

e

f

g

dp

10 pin wide DIP
Figure 4-2 7-Segment Display Packages

Table 4-2 7-Segment Pinouts (typical)

Part# FND507
Segment 14-pin 10-pin

ca/cc 14 3,8
A 1 7
B 13 6
C 10 4
D 8 2
E 7 1
F 2 9
G 11 10
Dp 9 5

33

Common Cathode / Common Anode
To save pins on 7-seg packages, all LEDs typically share one pin for a common anode, or
common cathode.

Common Cathode

a b c d e f g dp

a b c d e f g dp

Common Anode

Figure 4-3 LED Configuration in 7-Segment Display Packages

Current Limiting Resistors

a b c d e f g dp

5 V

Rcl

Single
+ simple

a b c d e f g dp

5 V

. . .Ra Rdp

Multiple
+ consistant brightness

Figure 4-4 Using Current Limiting Resistors

Decimal Points
Seven-segment displays come with both right handed (RHDP), and left handed (LHDP)
decimal points.

Light α Current
The amount of light emitted by an LED varies with current through the device. The
amount of ambient light determines the required LED intensity. 7-seg. displays typically
need 1 - 10 mA. Some are destroyed at 40 mA. More information is available in data books
and handouts.

Overflow Digits
Overflow digits are sometimes used as the msd of a display. They can display a "+" or "-"
sign, and a blank or "1". A 3 1/2 digit display would have 3 normal 7-segs. plus one
overflow digit.

Multi-Segment Displays

34

Seven-segment displays are available in multiple segment packages. Two, or four digits are
packaged together. Sometimes segment drive lines are multiplexed.

Liquid Crystal Displays (LCD)
LCDs are very similar to LED 7-segment displays. However, they do not emit light. Segments
can be seen in areas where light is not reflected. LCDs are voltage controlled devices. They
consume very little power.

74LS47 BCD-TO-7-SEGMENT DECODER

74LS47 BCD-to-7-Segment Decoder/Driver
Converts BCD data (digits 0 - 9, (4-bits)) into a 7-bit code used to drive 7-segment LED
displays. Illegal BCD inputs are translated into indiscriminate, yet distinct display patterns.
Data inputs to the code converter are: D, C, B, and A (lsb). Data outputs are: a, b, c, d, e, f,
g; corresponding to the standard segment names of a 7-seg. display. Outputs are active-low,
open-collector. The IC is designed to interface to common anode 7-segment displays. The
74LS47 has control inputs to test the segments, and blank leading zeros. Decimal points are
not affected by the 74LS47.

5V

a

b

c

d

e

f

g

dp

ca/cc

a

b

c

d

e

f

g

a

b

c

d

e

f

g

74LS47Vcc

A

B

C
D

LT*
RBI*

BI/RBO*

GND

16

8

7

1

2

6

3

5

4

13

12

11

10

9

15

14

5V
Rcl

Figure 4-5 Using a 74LS47 Display Driver

35

Blanking Most Significant Digits
Multi-digit displays can be made where leading zeros are blanked. RBO* and RBI* control
signals are daisy-chained to selectively blank digits. Any digit(s) that should always be
displayed (with at least "0") should have the 74LS47 driver's RBI* set to 1. Any digit(s) that
should be blanked when data is zero should have the driver's RBI* set to 0. Additional digits
can be blanked when data is zero, and previous data is blanked (data is zero) by chaining the
previous 74LS47 driver's RBO* to the present driver's RBI*.

74LS47
RBI* RBO*

7

4

74LS47
RBI* RBO*

7

4

74LS47
RBI* RBO*

7

4

74LS47
RBI* RBO*

7

4

Figure 4-6 Using Multiple Displays

HEX to 7-Segment Displays
To display HEX digits on a 7-seg. display, characters A, B, C, D, E, F, must be displayed in
addition to digits 0 - 9. This can be done using a mix of upper and lower case, and adjusting
6.

6 not 6 A B C D E F

HEX7SEG.PLD
HEX7SEG.PLD is a source file to program a PAL16L8 programmable logic device that
incorporates the functions of the 74LS47 except that it displays HEX. The source code will
be available.

36

MULTIPLEXED DISPLAYS
Multi-digit displays require a large number of signals (≈7 signals per digit). Multiplexing
LED drive lines is one way of reducing the signal count. This method can reduce the
number of drive signals to 7 + N. Where N is the number of digits.

The procedure sends 7 drive signals (a - g) to each of N digits' 7 cathodes (a - g). The
common anodes of each N digits are driven one at a time while the correct data is presented
to the cathodes. Precise timing is needed. The total number of signals is reduced.

74LS47
4

Digit
Driver

Figure 4-6 Multiplexing Displays

37

C H A P T E R 5 S E Q U E N T I A L
C I R C U I T S , CL O C K S A N D

O S C I L L A T O R S
ONE SHOTS AND CLOCK CIRCUITS FOR SEQUENTIAL DESIGN

CLOCKS & OSCILLATORS

MULTIVIBRATORS (SEQUENTIAL CIRCUITS)

Combinational Logic: A logic circuit in which the outputs are a function of the
inputs. At any time, if you know the inputs, you can
determine the outputs.

Sequential Logic: A logic circuit in which the outputs are a function of the

present, and past inputs. The memory of past inputs
involves the "state" of the system. At any time, if you the
know the present inputs, and state of the circuit, you can
determine the outputs.

Stable State: An internal or external signal maintains a constant magnitude

(or specified range or function) for a period of time
determined by external input signals.

Quasi-stable State: An internal or external signal maintains a constant magnitude

(or specified range or function) for a period of time
independent of external stimulus.

Unstable State : An internal or external signal varies in magnitude over time.

Table 5-1 Multivibrators

Type Example Stable States Quasi-Stable

Astable Clock 0 2
Monostable One-Shot 1 1
Bistable Flip-Flop 2 0

38

Clock

A clock is a device with no inputs and one
output.
Frequency
Duty Cycle
Magnitude

LM555 TIMER IC

The 555 is a multi-function device. Function depends on external configuration and
components.

Clock (Astable)
One-Shot (Monostable)
Missing Pulse Detector
Pulse-Width Modulator
Pulse-Position Modulator

LM555 Clock

f = 1.44 / [C1 * (Ra + 2Rb)]
range: ≈0.01 Hz to 1.00 MHz

dc = 100 * { 1 - [Rb / (Ra + 2Rb)] }
range: 50 to 100 %

magnitude = 0 V to +V
range: 4.5 to 16V

LM555 Clock Example
Design a clock circuit using a 555 timer
IC to produce a TTL clock with the
given specs:

f = 9600 Hz dc = 66.7 %

Step 1: Select C1. From Chart: let C1 = 0.01 µF
Step 2: Solve Ra vs. Rb ratio. 66.7 = 100 * {1 - [Rb / (Ra + 2Rb)]}
 1.0 Rb = Ra
Step 3: Solve for Exact Values9600 Hz = 1.44 / [0.01 µF * (Ra + 2Rb)]

9600 Hz / 1.44 = 1 / [0.01 µF * (3.0*Rb)]
Rb = 5000 Ω

∴ Ra = Rb = 5000 Ω

f = _____ Hz
DC = ___ %

TTL Clock

Figure 5-1 TTL Clock

RESET* Vcc

CONT GND

OUT

DISCH

THRES

TRIG

LM555

Ra

Rb

C1

C2

+V

84

7

6

2

5 1

3

0.01uF

Figure 5-2 LM555 Clock Circuit

39

CRYSTAL OSCILLATORS

Crystals: A crystal is made from a thinly cut piece of quartz sandwiched between
two metal leads. Quarts crystals force oscillation at their natural (mechanical)
frequency (or harmonics). The natural frequency is primarily a function of quartz
thickness. Crystals stabilize the frequency of an oscillating circuit. They provide
extremely good frequency stability (0.001 %).

Table 5-2 Crystal Oscillator Types

Oscillator Series Pierce (Parallel)
Inverter Two inverters Single inverter
Reactance negative positive reactance
Osc. Current 0.1 - 10 mA 1 - 300 µA
Start Time <100 ms <1 second
Long-Term Stability
Temp. Stability
Crystal Removed* Free run Stops
Package Seal Failure Shifts down Stops or shifts down
Frequency Adjust difficult Trimmer Capacitor
Cost less

R2

R3

X1

CMOS Series Oscillator

X1

C1

C1

R1R1 R2

TTL Series Oscillator

R1 = R2 = 1 k C1 = 0.1 uF

Figure 5-3 Crystal Clock Circuits

Equations for CMOS Series Oscillator: R1 = 5 MΩ * e-(10 * 10-6f)
 R2 = 0.12 * R1
 R3 = R2 / (0.3 Vcc - 0.5)

40

SELECTION OF VARIABLE RESISTORS

Variable resistors or potentiometers (pots) are used in clocks and one shots to provide
variable frequencies, duty cycles, and pulse widths. They are also used to fine tune circuits to
exact values. Fixed resistors do not come in every value. Pots can be used to get any value.
However pots should be used with a series resistor.

Example: Design a clock that can produce a variable frequency output in the range 1200 to
9600 Hz.

Step 1. Keeping C, and Ra the same, compute Rb for both frequencies.

 Assume 1200 Hz 9600 Hz
 Rb = 7.0K Ohms 2.7K Ohms

Step 2. Use a combination of a fixed resistor in series with a pot for Rb such that:

Rfixed < 2.7K Ohms
Rfixed + Rpot > 7.0K Ohms
Solution:
Rfixed = 2.2K, Rpot = 5K
2.2K < Rb < 7.2K

Keep the resistance of the pot large to have maximum variability.
A small turn of the pot results in big change in frequency.

Example: A clock of frequency 9600 Hz +/- 0.1% is needed.

Rb = 5000 Ohms
- tolerance of resistors 20, 10, 5, 1%
- tolerance of capacitors +80% to -20%
Solution: Large fixed resistor in series with a small pot.
Rfixed = 4700 Ohms, Rpot = 1K Ohms
4700 Ohms < Rb < 5700 Ohms

Keep the fixed resistor value large compared to the pot to get best accuracy or maximum
precision.
CAUTION: Use pots sparingly: - cost: $pots > $fixed
$ to adjust
- mechanical: noisy, unreliable

Rfixed

Rpot

Rb

Figure 5-4 Using

potentiometers to vary
frequency

41

SCHMITT GATES

Schmitt Gate Characteristics

• Schmitt gates are essentially TTL inverters that treat inputs slightly different from normal
CMOS or TTL.

4.4V

0.1V

Vout

Vin
1.5V 3.0VLogic Symbol

Figure 5-5. Schmitt Trigger Gate Symbol

• The input logic level is always defined.
• Schmitt-trigger inputs have different input threshold levels depending on the direction of the

input signal. (Hysteresis)
Inputs going from a low to a high voltage affect the output at Vt+ (positive threshold).
Inputs going from a high to a low voltage affect the output at Vt- (negative threshold).

Vil = 1.35V

Vih = 3.15V

Vin

Logic 0

undefined

Logic 1

Vt- = 1.5V

Vt+ = 3.0V

Vin

Logic 0

logic level

Logic 1

Last
unambiguous

a) HC Inputs b) HC Schmitt Inputs
Figure 5-6. High Speed CMOS (HC) Inputs

Applications
• Signal Conditioning: cleaning up noisy, or distorted digital signals
• Line Drivers & Receivers
• Clocks & Delay Circuits

42

3.0V

1.5V
Vin

t

Logic
Input

1

0

Logic
Output

1

0
Figure 5-7. Schmitt Timing Example

SCHMITT INVERTER CLOCK

Simple Schmitt Inverter Clock

R1

1k

C1 1uF

VoutVx

+5V

IC11 2

14

7
IC# Part# Vcc GND

1 74HC14 14 7
Figure 5-8. Schmitt Inverter Clock

Assume C1 is discharged before power is applied. Then Vx = 0.0 V.
Since Vx = Vin = logic 0, when power is applied Vout goes high (logic 1).

Vout Vin

R

C

4.4V Vin

R

C

4.4V Vout

a) Vin == Logic 0 b) Vin == Logic 1
Figure 5-9. Schmitt Clock Equivalent Circuits

43

Vin
Vth-

Vth+

1

0

1

0

Input

Output

t

Figure 5-10. Schmitt Clock Timing Diagram

POWER-ON RESET

Flip-Flops power up to unknown states. To assure that a sequential circuit begins operation
in a known state power-on/reset circuits are used.

Many registers, flip-flop, and latches have an active-low CLR* (or PRE*) input.

A power-on/reset circuit holds the CLR* input low for a short time after power is applied.

Factors to consider when designing tPOR:
• Response time for power supple to become stable.
• Reset time of ICs.
• User interaction.
• Clock settling time.

R1

C1

Vx5 V POR*

Figure 5-11 Power-On Reset Circuit

44

Vcc

Vx

POR*

Figure 5-12 Power-On Reset Waveform

Vx = Vcc (1 - e -t/τ) τ = RC Vth+ = Vcc(1 - e -(tPOR/RC))

Find tPOR when Vx > Vth+ for a Schmitt Trigger at your operating voltage.

ONE SHOTS

One Shot -- Monostable Multi-vibrators
A one-shot is a circuit that produces a stable output (logic 1 or 0) until a trigger (+ or - edge)
occurs. The trigger will cause the one-shot to produce a quasi-stable output for a time
period determined by the circuit configuration. After the specified period of time, the
output returns to the stable state.

The pulse width of the quasi-stable state is independent of external stimulus. Usually, the
pulse with is a function of a RC time constant.

 Tw = f(R,C) = 0.7RC (for a 74LS221)

One-Shot

TRIG OUT

45

Figure 5-13 Oneshot Timing Waveform

74LS221 Dual One-Shot

The 74LS221 is a dual version of the 74LS121 TTL one-shot. The '221 has either a positive
or negative edge trigger, and an active-high, or active-low output.

Refer to TTL data book for
specifications.

Tw = ln2 * RC

range: 35 ns to 70 s

for jitter free operation:
10 pF ≤ C ≤ 10 µF

 1A

1B

1CLR*

1Q

1Q*

1Rext/Cext1Cext

74LS221
(1/2)

5 V

R

C
+

Figure 5-14 74LS221 One-Shot Circuit

TRIG

OUT

A

B
A retriggerable one-shot output

B non-triggerable one-shot output

Tw

TwTw

46

C H A P T E R 6 C O U N T E R S , F L I P-
F L O P S & S H I F T R E G I S T E R S

DESIGNING SEQUENTIAL CIRCUITS

FLIP-FLOPS

A flip-flop is a device that can maintain binary information until it is directed by an input
signal to change its state. There are several different types of flip-flops, the more commonly
used are the D-FF and the JK-FF. Flip-flops are used in sequential circuit design. Refer to
the High Speed CMOS databook for information on using these flip-flops.

COUNTERS

Counters are sequential circuits or devices that go through a sequence of states when it is
clocked. The input clock pulses could occur at discrete time intervals or they may be at
random. In digital electronics we are interested in binary and BCD counters. Binary counters
are counters that go through a binary sequence. An n-bit binary counter is made of n flip-
flops and can count from 0 to 2n-1 BCD counters count using BCD numbers from 0000 to
1001 and then returns to 0000 and repeats.

MOD-N COUNTERS

A Mod-N counter is one that counts through N states. Most often these mod-N counters
count from 0 to n-1 then repeats. Refer to the Digital Design text for an example of the
design of a mod-N counter.

FREQUENCY DIVISION USING COUNTERS

The output bits of a counter circuit can be used to divide the frequency of the input clock.
Each bit divides the circuit by 2n. Additionally, a mod-n counter can be used to divide
frequency. The output frequency will be f/n where f is the input clock frequency.

Synchronous, Semi-Synchronous, & Asynchronous Counter Differences

47

clk

a
b

c
d

rco

rco

Figure 6-1 BCD Counter Timing Diagram

clk

a

b

c

Figure 6-2 -Edge Triggered Ripple Counter

clk

a

b

c

Figure 6-3 Ripple Counter -- Zoom In With Very Fast Clock

48

C H A P T E R 7 P R O G R A M M A B L E
L O G I C D E V I C E S

DESIGNING WITH PALS AND GALS

PROGRAMMABLE LOGIC D EVICES

Programmable Logic Devices (PLDs) are digital integrated circuits where the Boolean function
can be determined by the user. PLDs can replace several specific purpose ICs in a digital design.
A single PLD is functionally equivalent to a specific device containing from 5 to 10,000 gates.
Typically PLDs implement Boolean functions using Sum Of Minterms (SOM) or Sum of
Products (SOP) form. SOM and SOP use a AND-OR gate structure.

PLD Programming
PLDs are manufactured in a "blank" or "erased" form. Programming is performed in
concept blowing out fuses between inputs, AND gates, and OR gates in the generic AND-
OR structure. An erased PLD has all fuses intact. Actual "fuses" may be implemented as:

Table 7-1 PLD Type Comparison

Type Function Advantages
fuses one-time programmable low cost
EPROM uv light erasable Reprogrammable
CMOS
EEPRO
M

Electrically erasable fast, easy reprogramming

Figure 7-1 Fuses and Logic Implementation

A blown fuse acts like the input does not exist (or a logic 1 at the input).

PLD ADVANTAGES:

+ reduce IC package count
board space
power

+ shorten design time
+ allow for future changes (maintainability)
+ improve reliability (fewer packages)

49

+ generally faster
+ smaller inventory

!! Design for overall lowest cost over life of product !!
IC cost
$0.25 7400 Quad 2-input NAND
$1.50 PAL16L8

SIMPLE GENERIC PALS

Date: August 12, 1992 Sheet 1 of

Size Document Number REV

A PAL2H1 0

Title

PAL2H1 (Hypothetical)

Bruce Hoeppner

I1

I2

F1

50

Date: August 20, 1992 Sheet of

Size Document Number REV

A PAL4H4.SCH

Title

Generic PAL4H4

Bruce Hoeppner

F1

10987654321
1

2

Product
Terms

I1

3

F2
4

5

6

I2

7
F38

9

I3

11

10
F4

10

I4

12

1

AND gate inputs

2 3 4 5 6 7 8 9

Figure 7-2 Simple PAL

51

PAL Example: Given functions w, x, y, and z. Implement with one PAL4H4.

Given: Sum of Minterms ... After Simplification
W(A,B,C,D) = Σ(2,12,13) w = ABC' + A'B'CD'
x(A,B,C,D) = Σ(7,8,9,10,11,12,13,14,15) x = A + BCD
Y(A,B,C,D) = Σ(0,2,3,4,5,6,7,8,10,11,15) y = A'B + CD + B'D'
z(A,B,C,D) = Σ(1,2,8,12,13) z = w + AC'D' + A'B'C'D

Table 7-2 PAL Programming Table

 AND Inputs
Product Term A B C D w Outputs

1 ABC' 1 1 0 - - w = ABC' + A'B'CD'
2 A'B'CD' 0 0 1 0 -
3 - - - - -
4 A 1 - - - - x = A + BCD
5 BCD - 1 1 1 -
6 - - - - -
7 A'B 0 1 - - - y = A'B + CD + B'D'
8 CD - - 1 1 -
9 B'D' - 0 - 0 -
10 w - - - - 1 z = w + AC'D' + A'B'C'D
11 AC'D' 1 - 0 0 -
12 A'B'C'D 0 0 0 1 -

52

Date: August 20, 1992 Sheet of

Size Document Number REV

A PAL4H4.SCH

Title

Generic PAL4H4

Bruce Hoeppner

F1

10987654321
1

2

Product
Terms

I1

3

F2
4

5

6

I2

7
F38

9

I3

11

10
F4

10

I4

12

1

AND gate inputs

2 3 4 5 6 7 8 9

A

B

C

D

w

x

y

z

Figure 7-3 Programmed PAL Connections

53

CUPL PLD COMPILER

CUPL is a software package that runs on an PC. It performs most of the work in translating
a PLD design into a programming file. The programming file can be used to program an IC
to implement the desired logic functions. Maruette University (College of Engineering) has
a site license for CUPL.

COMBINATIONAL LOGIC IMPLEMENTATION

Problem: CUPL expressions must be written for the function. Sum of Products (SOP) is the
form CUPL uses. There is a limit of 7 product terms.

Given: A sum of products equation.
Find: A complement form of the equation also in sum of products.

Example: A = x'y + xy'z
In CUPL this becomes: A = !x&y # x&!y&z;

Example: B = x'y'z' + xy' + yz
In CUPL this becomes: B = !x&!y&!z # x&!y # y&z;

See sample file: example1.pld

SEQUENTIAL CIRCUIT IMPLEMENTATION OF PROGRAMMABLE LOGIC

Given: The state diagram for a sequence recognizer (0110)
Problem: Implement using one PAL16R4 or GAL16V8

Table 7-3 State Table

State Inpu
t

Next Output

B A S B A found
 0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 0 0 0

Insert into K-Maps:

00 01

1011

---- 0---

01--011-

0/0

1/0
0/0

1/0

0/0
1/0

1/00/1

Figure 7-4 Sequential State

Diagram

54

 B
BA
s\

00 01 11 10

0

1 1 1

DB = s(B'A) + s(BA')

 A
BA
s\

00 01 11 10

0 1 1 1

1 1

 DA = s'B' + B

Let: pin 1 = clock, pin 2 = s, pin 19 = found, pin 17 = B, pin 16 = A, and pin 11 = !enable

Written in CUPL form:
B.d = s&!B&A # s&B&!A;
A.d = !s&!B # B&!A;

The output equation is:

BA
s\

00 01 11 10

0 1

1

found = !s&B&A; See: example3.pld & example4.pld

55

C H A P T E R 8 P R O G R A M M I N G W I T H
C U P L

COMPILING YOUR PLD PROGRAM

1. Start CUPL application.
2. Select File..New

This opens a new PLD file using the standard template.
3. Edit the PLD file.

In the header portion: include the following information:
Name XXXXX; The source logic description filename
Partno XXXXX; Company’s proprietary part number for the PLD design
Date XX/XX/XX; Current date of source file modification
Revision XX; Beginning with 01 and incrementing each time a file is altered
Designer XXXXX; Designer’s name
Company XXXXX; Company name
Assembly XXXXX; Assembly name or number on which the PLD will be used
Location XXXXX; PC board reference or coordinate where PLD will be placed
Device XXXXX; Default device type for compilation
Include a description of the function of the PLD program.
/* This is a comment. */
In the Inputs section, specify your inputs.
Pin 2 = x;
In the Outputs section specify your outputs.
Pin 19 = A;
Depending on the function of your PLD you may need to define intermediate variables
and declarations.
You may use Logic Equations for your outputs, Truth Tables, State Machines.

4. Save your PLD file under File Menu, Save As.
Hint: Save it on your floppy disk to bring to lab.

5. Set Compiling options. Select Option Menu, Compiler Options.
Under Miscellaneous, select JEDEC Name = filename
Choose Output File button. Under Download, select JEDEC/POF/PRG. Click OK.
Click Select Device button. Select Device Type: GAL. Device Selection: g16v8 (if you
are using the Gal16V8). Click OK.
Click Select Library button if no library is shown. Enter library name:
“\\Molitor\WINCUPL\CUPL.DL” Click OK. NOTE: You must be logged on to the
ENGINEERING domain in order for this to work.
Click OK on Compile Window.

6. Compile your program.
Select Run menu item. Choose Device Specific Compile.
Your program will start compiling.

7. Check for errors or warnings in the Message window. If there are none, you are close to
being done. Click OK on the Compile Status window.

If you want to find out more about the capabilities, consult the Help menu or CUPL Starter
Manual.

56

PROGRAMMING YOUR PLD

1. Take your disk with your PLD and JED file to a computer in the Digital Lab or Open

Lab with an ALLPRO-88 Programmer.

2. Insert your GAL into the ALLPRO programmer. Be sure to place it in the proper

direction. Pin 1 should face closer to the front of the programmer. Do NOT attempt
to program your chip when it is placed incorrectly. This will most likely ruin your
GAL.

3. If it isn’t started already, start the ALLPRO software.

4. Select your Device Type based upon the manufacturer Use the Choose Library and

Device option. Some common device libraries are as follows:
AMD : PLDAM5
Cypress: PLDCYP
Lattice: PLDLA1
SGS Thompson: PLDSGS

5. Perform a Blank Check on the device. If your device is electronically eraseable and not

blank, it may still be able to be programmed, however if your chip is UV-eraseable, you
need to erase the chip before programming.

6. Read in your JED file using the Read Formatted File. This should be off the A: drive.

Take note of the checksum number returned.

7. Program your device using the Program Device option. Do not touch the chip while

the red program light is on.

8. Programming may be verified by comparing the checksum given after the programming

is complete with the checksum returned when reading your JED file.

9. Be sure to remove your disk from the A: drive.

If you are having any problems consult the TA.

57

The following are example programs of the CUPL programming language.

Name Example1;
Partno none;
Date 06/01/98;
Revision 01;
Designer Bruce Hoeppner;
Company EECE143;
Assembly none;
Location EN365;
Device G16V8;

/**/
/* Example program to implement the following equations */
/* in CUPL Programming language */
/* */
/* A = x'y + xy'z */
/* B = x'y'z' + xy' + yz */
/* */
/**/
/* Allowable Target Device Types: */
/**/

/** Inputs **/

Pin 2 = x;
Pin 3 = y;
Pin 4 = z;

/** Outputs **/

Pin 19 = A;
Pin 18 = B;

/** Declarations and Intermediate Variable Definitions **/

/** Logic Equations **/

A = !x&y # x&!y&z;

B = !x&!y&!z # x&!y # y&z;

/** End of example1.pld source code **/

58

Name Example2;
Partno example2.pld;
Date 06/01/98;
Revision 01;
Designer Bruce Hoeppner;
Company EECE143;
Assembly PLD Source Code;
Location EN365;
Device G16V8;

/**/
/* Example program to implement the following equations */
/* in CUPL programming language using Truth Tables */
/* */
/* A = x'y + xy'z */
/* B = x'y'z' + xy' + yz */
/* */
/**/
/* Allowable Target Device Types: */
/**/

/** Inputs **/

Pin 2 = x;
Pin 3 = y;
Pin 4 = z;
/** Outputs **/

Pin 19 = A;
Pin 18 = B;

/** Declarations and Intermediate Variable Definitions **/

FIELD INPUT = [x,y,z];

FIELD OUTPUT = [A,B];

/** Truth Table **/

TABLE INPUT => OUTPUT {

0=>'b'01;
1=>'b'00;
2=>'b'10;
3=>'b'11;
4=>'b'01;
5=>'b'11;

59

6=>'b'00;
7=>'b'01;
}
/** End of example2.pld source code **/

60

Name Example3;
Partno example3.pld;
Date 02/19/99;
Revision 01;
Designer JChris Perez;
Company EECE143;
Assembly PLD Source Code;
Location EN365;
Device G116V8;

/**/
/* Example program to implement the sequential circuit */
/* in CUPL programming language using equations */
/* */
/**/
/* Allowable Target Device Types: g16v8 */
/**/

/** Inputs **/

Pin 1 = clock;
Pin 2 = s;
Pin 11 = !enable;
/** Outputs **/

Pin 19 = found;
Pin 17 = B;
Pin 16 = A;

/** Declarations and Intermediate Variable Definitions **/

/** Logic Equations **/

B.d = s&!B&A#s&B&!A;
A.d = !s&!B#B&!A;

/** End of example3.pld source code **/

61

Name Example4;
Partno example4.pld;
Date 06/01/98;
Revision 01;
Designer Bruce Hoeppner;
Company EECE143;
Assembly PLD Source Code;
Location EN365;
Device G16V8;

/**/
/* Example program to implement the sequential circuit */
/* in CUPL programming language using State Machines */
/* */
/* */
/**/
/* Allowable Target Device Types: */
/**/

/** Inputs **/

Pin 1 = clock;
Pin 2 = s; /* combinational data input */
Pin 11 = !enable;

/** Outputs **/

Pin [14..15] =[Q1..0];
Pin 19 = found; /* combinational output */

/** Declarations and Intermediate Variable Definitions **/

field state = [Q1..0];
/* field state= [B,A]; */

$define S0 'b'00
$define S1 'b'01
$define S2 'b'10
$define S3 'b'11

/** State Machine **/

Sequence state {
present S0 if s next S0;
 default next S1;
present S1 if s next S2;
 default next S1;

62

present S2 if s next S2;
 default next S3;
present S3 if s next S0;
 default next S3 out found;
}
/** End of example4.pld source code **/

63

C H A P T E R 9 M I C R O P R O C E S S O R S
A N D M I C R O C O N T R O L L E R S

DIGITAL DESIGN WITH M ICROCONTROLLERS

68HC11 INTRODUCTION AND FEATURES

Single chip microcomputer: includes CPU, Memory, and I/O.
Designed for control applications (vs data processing.)

68HC711E9 Integrated Circuit
CPU:

8-bit word size
6800 instruction set with extensions
Accumulators: AccA, AccB (8-bit)
Index registers: X, Y (16-bit)
Modes of operation:

Single Chip
Expanded (64K address space)
Special Boot
Test

Memory: (On chip)

12K of EPROM
512 bytes of EEPROM
256 - 512 bytes of RAM

Input/Output: (Memory mapped)

5 parallel digital I/O ports
RS-232 (connect to terminals or PCs)
High Speed Synchronous Serial
Parallel Handshake (Printer)
Timer functions

Generate precise digital signals
Measure frequency and pulse width
Count external events
Real Time Clock

8-channel, 8-bit Analog to Digital Converter

68HC11EVBU Evaluation Board

68HC11 IC
Single 5V Operation
RS-232 Port
Battery Backup Clock

64

68HC11 REGISTERS

Accumulators

A, B 8-bit accumulators, location of math and logic functions

D 16-bit accumulator, actually same physical device as A and B taken together

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
AccA AccB

AccD
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Index Registers

X, Y 16-bit registers, used for indexed addressing (may be used as general storage
registers or counters)

Special Registers

P 16-bit program counter, keeps track of address of next instruction to be executed.

S 16-bit stack pointer, used for temporary storage of the program counter (needed
for subroutines)

C 8-bit condition code register. Stores several 1-bit flags (status indicators), and
interrupt masks

Condition Code Register
S X H I N Z V C
7 6 5 4 3 2 1 0

Flags are set according to the result of certain opcodes:

C set when a math operation carrys or borrows
V set when a math operation exceeds and 8-bit result
Z set when a result of a math or logic operation is $00
N set when a result of an operation leaves the MSB = 1
H set when a math operation carrys or borrows between two nibbles of a byte.
I user must clear I to enable I-interrupts. (=1 @ reset)
X user must clear X to enable X-interrupts. (=1 @ reset)

65

68HC11 MEMORY MAP

Memory Address Space

The 68HC11 has a 16-bit program counter, and 16-bit address bus (external pins). This
allows for 216 possible memory locations (65536 ==> 64K).

68HC11 Single Chip Mode Memory Map
Top of Memory $FFFF

 FFFF Reset Vectors
and
Interrupt Vectors

FFC0 (part of 8K ROM)
FFBF
 Rest of 8K ROM
E000
DFFF
 Unused in single chip mode
 (RAM on EVB)
C000
BFFF
 Unused in single chip mode
B800
B7FF
 512 byte Internal EEPROM
B600
B5FF
 Unused in single chip mode
8000
7FFF
 Unused in single chip mode
6000
5FFF
 Unused in single chip mode
1040
103F
 I/O Registers
1000
0FFF
 Unused in single chip mode
0100
00FF
 256 byte internal RAM
0000
Bottom of Memory

66

68HC11 I/O REGISTERS

I/O Registers on the 68HC11 are found in the memory address space. The 5
parallel (digital) input/output ports are:

Port A $1000 8-bit I/O port.

Inputs: bits 0, 1, 2
Outputs: bits 3, 4, 5, 6
Bidirectional: bit 7 (controlled by DDRA7)

Port B $1004 Output only port. EVB pins 42 - 35 (0 -7)

Port C $1003 8-bit bidirectional I/O port.

Direction is determined by the value of the
Port C Data Direction Register (DDRC)

DDRC $1007 Each bit in DDRC sets the corresponding bit

in Port C as either an input (0 in DDRC) or as an
output (1 in DDRC). Default: all 0's

Port D $1008 6-bit bidirectional I/O port.

Direction is determined by the value of the Port D
Data Direction Register (DDRD)

DDRD $1009 Similar in function to DDRC.

Port E $100A Input only port. EVB pins 43 - 50 (0 -7)

67

M68HC11 INTEGRATED CIRCUIT

Table 9-1 68HC11 Pin Functions

Name Description PLCC EVB EVBU 48DIP 40DI
P

Vss/GND Ground 1 1 1
MODB/Vstby Mode Select, Stand-by

power
2 2 2

MODA/LIR* Mode Select; LIR* Status
Signal

3 3 3

STRA/AS Strobe A; Address Strobe 4 4 4
E E System Clock 5 5 5
STRB/RW* Strobe B; R/W* Control

Signal
6 6 6

EXTAL Crystal Pin, or Clock Input 7 7 7
XTAL Cryatal Pin 8 8 8
PC0/AD0 PortC Pin0; Addr/Data 0 9 9 9
PC1/AD1 10 10 10
PC2/AD2 11 11 11
PC3/AD3 12 12 12
PC4/AD4 13 13 13
PC5/AD5 14 14 14
PC6/AD6 15 15 15
PC7/AD7 16 16 16
RESET* Reset input and output 17 17 17
XIRQ* "Non-maskable" Interrupt 18 18 18
IRQ* Interrupt 19 19 19
PD0/RxD PortD, Pin0; RS232

Receive Data
20 20 20

PD1/TxD ... RS232 Transmit Data 21 21 21
PD2/MISO ... Master In Slave Out

Data Line
22 22 22

PD3/MOSI ... Master Out Slave In
Data Line

23 23 23

PD4/SCK ... Sync. Periph. Interface
Clock

24 24 24

PD5/SS* ... Slave Select Control
Signal

25 25 25

Vdd 5 Volt Power Supply 26 26 26
PA7/PAI/OC
1

PortA, Pin7; Pulse Accum.;
Output Compare 1

27 27 27

PA6/OC2/O
C1

PortA, Pin6; Output
Compare 2,

28 28 28

68

PA5/OC3/O
C1

PortA, Pin5; Output
Compare 3,

29 29 29

PA4/OC4/O
C1

PortA, Pin4; Output
Compare 4,

30 30 30

PA3/OC5/O
C1

PortA, Pin3; Output
Compare 5,

31 31 31

PA2/IC1 PortA, Pin2; Input Capture
1

32 32 32

PA1/IC2 PortA, Pin1; Input Capture
2

33 33 33

PA0/IC3 PortA, Pin0; Input Capture
3

34 34 34

PB7/A15 PortB, Pin7; Address Bus
15

35 35 35

PB6/A14 36 36 36
PB5/A13 37 37 37
PB4/A12 38 38 38
PB3/A11 39 39 39
PB2/A10 40 40 40
PB1/A09 41 41 41
PB0/A08 42 42 42
PE0/AN0 PortE, Pin0; ADC Input 0 43 43 43
PE4/AN4 44 44 44
PE1/AN1 45 45 45
PE5/AN5 46 46 46
PE2/AN2 47 47 47
PE6/AN6 48 48 48
PE3/AN3 49 49 49
PE7/AN7 50 50 50
Vrl ADC Reference Voltage - 51 51 51
Vrh ADC Reference Voltage + 52 52 52

Spare Spare Connector Pins na nc 53-56

Vcc EVBU Power Rail na nc 57,58
GND EVBU Ground Rail na nc 59,60

69

1
234567

8

9

10

11

12

13

14

15

16

17

18

19
20

21 22 23 24 2928272625 30 31 32 33

52 51 50 49 48 47

45

44

43

42

41

40

39

38

37

36

35

34

46

MC68HC11A8FN1

Figure 9-1: 68HC11 IC in a 52-pin PLCC Package

MODB
STRA
STRB
XTAL
PC1

PC5
PC7
XIRQ*
PD0
PD2

PD4
VDD
PA6
PA4
PA2
PA0
PB6

PB2
PB0

PB4

PE4

PE6
PE7

PE5

NC
NC

VRH

NC
NC

NC
NC
NC
NC

MODB
STRA
STRB
XTAL

PC2
PC4
PC6

RESET*

PD1

PD3
PD5
PA7
PA5
PA3
PA1
PB7

PB3
PB1

PB5

PE0

PE2
PE3

PE1

VRL

IRQ*

2
4
6
8
10
12
14
16
8
20
22

24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

1
3
5
7
9
11
13
15
17
19
21

23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

PC3
PC0

Figure 9-2: 68HC11 EVB P1 60-Pin Header

70

68HC11 INSTRUCTION SET INTRODUCTION

Move Instructions and Addressing Modes

LDAA LoaD Accumulator A LDAA operand
Copies data from the location specified by the operand to AccA

Immediate Addressing: data immediately follows instruction. Use # before number
constant.

 LDAA #$64 $64 → AccA

 LDAA #100 exact same as above

CYCLES EQU 100
 LDAA #CYCLES

Direct Addressing (8-bit address): 8-bit address of data follows instruction. Also called
Page 0 Addressing.

 LDAA $64 $0064 is 16-bit address
 value at RAM address $64 → AccA
 [$0064] → AccA

Extended Addressing (16-bit address): 16-bit address of data follows instruction.

 LDAA $100A [$100A] → AccA

 PORTE EQU $100A

 LDAA PORTE

Indexed Address: the operand's address is the content of the index register plus the
constant given in the instruction.

 LDX #$1000
 LDAA $A,X [[$1000] + 10] → AccA

REGBASE EQU $1000

 LDAA 10,X

71

Other Load Instructions

LDAB LoaD Accumulator B LDAB operand
Copies data from the location specified by the operand to AccB

LDD LoaD Accumulator D LDD operand
Copies 2 bytes of data from the location specified by the operand to AccD. The byte at the
location specified is moved to bits 8 - 15 of AccD, then the byte at the specified address + 1
is moved to bits 0 - 7.

LDX LoaD index register X LDX operand
Similar to LDD

LDY LoaD index register Y LDY operand
Similar to LDD

LDS LoaD Stack pointer LDS operand
Similar to LDD

Store Instructions

STAA STore AccA STAA operand
Copies data from AccA to the location specified by the operand.

Other Store opcodes: STAB, STD, STX, STY, STS

Transfer Instructions

TAB Transfer AccA to AccB TAB
Copies data from the AccA to AccB. Old data in AccB is lost.
This is an example of Inherent Address Mode.

Other Transfer opcodes: TBA, TAP (to C), TPA, TSX, TXS, ...

Stack Instructions

PSHA PuSH AccA PSHA
Copies data in AccA to the memory location specified by the stack pointer (S), then
decrements S by 1.

PULA PULl AccA PULA
Copies data from the memory location specified by the stack pointer (S) to AccA, then
increments S by 1.

Other Stack opcodes: PSHB, PULB, PSHX, ...

72

Clear Instructions

CLRa CLeaR AccA CLRA, CLRB
Clears AccA (resets all bits to 0).

CLR CLeaR memory location CLR operand
Clears the data in that memory location (resets all bits to 0). May be used with Indexed or
Direct addressing modes only.

Inherent & Relative Addressing Modes
(Two addressing modes do not apply to load instructions; Inherent (operand information is
contained in the opcode), and Relative (used for branching, see BEQ opcode).)

Arithmetic Instructions

ADDA ADD AccA ADDA operand
Add the value specified by the operand to the value in AccA, then put the result back in
AccA. Addressing Modes: Immediate, Direct, Extended, or Indexed.

ADCA ADd with Carry AccA ADCA operand
Add the value specified by the operand, plus the value of the carry bit (C flag in the
Condition Register) to the value in AccA, then put the result back in AccA. Addressing
Modes: Immediate, Direct, Extended, or Indexed.

Other Arithmetic Instructions: ADDB, ...

Logic Instructions

ANDA AND accumulator A ANDA operand
Perform a bit-wise ANDing of AccA with the value specified by the operand.

Other Logic Instructions: ANDB, ORAA, ...

Shift Instructions

ASLA Arithmetic Shift Left AccA ASLA
Shift a 0 into bit 0 of AccA, bit 0 into bit 1, ..., bit 6 into bit 7, and bit 7 into the carry flag
(C).

C ← b7 b6 b5 b4 b3 b2 b1 b0 ← 0

ASRA Arithmetic Shift Right AccA ASRA
Shift bit 7 into bit 7 and bit 6, bit 6 into bit 5, ..., bit 1 into bit 0, and bit 0 into the carry flag
(C). This instruction divides a twos complement value by two without changing the sign.

73

LSLA Logical Shift Left AccA LSLA
Exact same as ASLA

LSRA Logical Shift Right AccA LSRA
Shift a 0 into bit 7, bit 7 into bit 6, bit 6 into bit 5, ..., bit 1 ito bit 0, and bit 0 into the carry
flag (C).

0 → b7 b6 b5 b4 b3 b2 b1 b0 → C

ROLA ROtate Left AccA ROLA

C ← b7 b6 b5 b4 b3 b2 b1 b0 ← C

ROLA ROtate Right AccA ROLA

C → b7 b6 b5 b4 b3 b2 b1 b0 → C

Control Instructions

JMP JuMP to new address JMP operand
Load program counter with address specified by operand, then begins executing instructions
at that address. Operand specifies a 16-bit address anywhere in the 64K address space.
Extended or Indexed addressing modes.

BRA BRAnch to new address BRA operand
Load program counter with a new address specified by operand, then begins executing
instructions at that address. Operand specifies a branch between -128 to +127 bytes from
the instruction immediately following the branch instruction. The operand can be a label if
it designates an address within the allowed range. Relative addressing only!

BEQ Branch if EQual BEQ operand
Branch to address specified if the Z flag is set.

BHI Branch if Higher BHI operand
Usually follows a compare or math instruction. Assumes unsigned numbers.

JSR Jump to SubRoutine JSR operand
Push the program counter onto the stack. Jump to the address specified by the operand.
Execute instructions until a RTS instruction is encountered. Then return to instruction
following the JSR instruction.

RTS ReTurn from Subroutine RTS
Causes a return from a subroutine call.

Other Control Instructions: ...

74

68HC11 INSTRUCTIONS

Imm. Immediate Index Indexed
Direct Direct (8-bit address, or page zero) Inherent Inherent
Exten. Extended (16-bit address)

Table 9-2 68HC11 Move Instructions

Instr. Description Imm. Direct Exten. Index Inher.
lda_ Load Acc_ √ √ √ √
ldd Load AccD √ √ √ √
ldx Load IX √ √ √ √
ldy Load IY √ √ √ √
Lds Load Stack Pointer √ √ √ √
Sta_ Store Acc_ √ √ √
Std Store AccD √ √ √
Stx Store IX √ √ √
Sty Store IY √ √ √
Sts Store Stack Pointer √ √ √
tab Transfer AccA to AccB √
tba Transfer AccB to AccA √
tap Transfer AccA to Flags √
tpa Transfer Flags to AccA √
Tsx Transfer SP to IX √
Txs Transfer IX to SP √
Tsy Transfer SP to IY √
Tys Transfer IY to SP √
psh_ Push Acc_ to stack √
pul_ Pull Acc_ from stack √
pshx Push IX to stack √
pulx Pull IX from stack √
pshy Push IY to stack √
puly Pull IY from stack √
Clr_ Clear Acc_ √
Clr Clear Memory √ √
tsta Test A √
tstb Test B √
Tst Test [M] √ √

xxx_ replace "_" with
 "a" or "b"

75

Table 9-3 68HC11 Arithmetic Instructions
Instr. Description Imm. Direct Exten. Index Inher.
add_ add Acc_ √ √ √ √
adc_ add w/carry √ √ √ √
aba add AccB to AccA √
sub_ subtract AccB √ √ √ √
sbc_ subtract w/borrow √ √ √ √
sba subtract AccB from AccA √
cmp_ Compare Acc_ √ √ √ √
cba Compare AccB to AccA √
inc_ Increment Acc_ √
inc Increment Memory √ √
dec_ Decrement Acc_ √
dec Decrement Memory √ √
neg_ Negate Acc_ √
neg Negate Memory √ √
asl_ Arith. Shift Left Acc_ √
asl Arith. Shift Left Memory √ √
asr_ Arith. Shift Right Acc_ √
asr Arith. Shift Right Memory √ √
addd Add AccD √ √ √ √
subd Subtract AccD √ √ √ √
cpd Compare AccD √ √ √ √
cpx Compare IX √ √ √ √
cpy Compare IY √ √ √ √
inx Increment IX √
iny Increment IY √
ins Increment Stack Pointer √
dex Decrement IX √
dey Decrement IY √
des Decrement Stack Pointer √
fdiv Floating Point Divide √
idiv Integer Divide √
asld Arith. Shift Left AccD √
daa Decimal Adjust AccA √
mul Multiply AccA * AccB √
abx Add AccB to IX √
aby Add AccB to IY √

xxx_ replace "_" with
 "a" or "b"

76

Table 9-4 68HC11 Logic Instructions

Instr. Description Imm. Direct Exten. Index Inher.
and_ AND Acc_ √ √ √ √
ora_ OR Acc_ √ √ √ √
eor_ Exclusive OR Acc_ √ √ √ √
bit_ Bit Test √ √ √ √
com_ Complement (1's) Acc_ √
com Complement Memory √ √
sec Set Carry Flag √
sei Set Interrupt Mask √
sev Set Overflow Flag √
clc Clear Carry Flag √
cli Clear Interrupt Mask √
clv Clear Overflow Flag √
bset Set Bit √ √
bclr Clear Bit √ √
lsl_ Logical Shift Left Acc_ √
lsl Logical Shift Left Memory √ √
lsr_ Logical Shift Right Acc_ √
lsr Logical Shift Right Memory √ √
lsld Logical Shift Left AccD √
lsrd Logical Shift Right AccD √
rol_ Rotate Acc_ Left √
rol Rotate Memory Left √ √
ror_ Rotate Acc_ Right √
ror Rotate Memory Right √ √

xxx_ replace "_" with
 "a" or "b"

77

Table 9-5 68HC11 Control Instructions

Instr. Description Mode Simple Sign Unsign Bit
jmp Jump to E,I
bra Branch to R
brn Branch Never R
nop No Operation R
beq Branch if Equal or Zero R √
bne Branch if Not Equal R √
bmi Branch if Minus (MSB set) R √
bpl Branch if Plus (MSB clear) R √
bcs Branch if Carry Set R √
bcc Branch if Carry Clear R √
bvs Branch if Overflow Set R √
bvc Branch if Overflow Clear R √
bgt Branch if Greater Than R √
bge Branch if Greater or Equal R √
blt Branch if Less Than R √
ble Branch if Less or Equal R √
bhi Branch if Higher Than R √
bhs Branch if Higher or Same R √
blo Branch if Lower Than R √
bls Branch if Lower or Same R √
brset Branch if Bit Set D,I √
brclr Branch if Bit Clear D,I √
jsr Jump to Subroutine E, I
bsr Branch to Subroutine R
rts Return from Subroutine
rti Return from Interrupt
swi Software Interrupt Call
stop Put uP in Stop mode
wait Put uP in Wait mode

78

BRANCH IF EQUAL

BEQ Branch if EQual BEQ

Operation: PC ⇐ (PC) + $0002 + Rel if (Z) = 1

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is set.
 See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

S X H I N Z V C
- - - - - - - -

 None affected

Source Form: BEQ (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

 BEQ (REL)
Cycle Addr Data R/W*

1 OP 27 1
2 OP+1 rr 1
3 FFFF -- 1

79

The following table is a summary of all branch instructions.

Test Boolean Mnemoni
c

Opcod
e

Comment

r > m Z+(N⊕
V)=0

BGT 2E Signed

r > m N⊕V=0 BGE 2C Signed
r = m Z=1 BEQ 27 Signed
r < m Z+(N⊕

V)=1
BLE 2F Signed

r < m N⊕V=1 BLT 2D Signed
r > m C + Z = 0 BHI 22 Unsigned
r > m C = 0 BHS/BCC 24 Unsigned
r = m Z = 1 BEQ 27 Unsigned
r < m C + Z = 1 BLS 23 Unsigned
r > m C = 1 BLO/BCS 25 Unsigned
Carry C = 1 BCS 25 Simple
Negati

ve
N = 1 BMI 2B Simple

Overfl
ow

V = 1 BVS 29 Simple

r = 0 Z = 1 BEQ 27 Simple
Alway

s
-- BRA 20 Uncondition

al

Motorola M68HC11 Reference Manual A-17

80

LOAD ACCUMULATOR

LDA LoaD Accumulator LDA

Operation: AccX ⇐ (M)

Description: Loads the contents of memory into the 8-bit accumulator. The condition codes are
set according to the data.

Condition Codes and Boolean Formulae:

S X H I N Z V C
- - - - ô ô 0 -

N R7
 Set if MSB of result is set; cleared otherwise

Z R7' • R6' • R5' • R4' • R3' • R2' • R1' • R0'
 Set if result is $00; cleared otherwise

V 0
 cleared

Source Form: LDAA (opr); LDAB (opr)

81

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

 LDAA (IMM) LDAA (DIR) LDAA (EXT) LDAA
(IND,X)

LDAA
(IND,Y)

Cycle Add
r

Dat
a

R/
W*

Add
r

Dat
a

R/
W*

Add
r

Dat
a

R/
W*

Add
r

Dat
a

R/
W*

Add
r

Dat
a

R/
W*

1 OP 86 1 OP 96 1 OP B6 1 OP A6 1 OP 18 1
2 OP

+1
ii 1 OP

+1
ii 1 OP

+1
hh 1 OP

+1
ff 1 OP

+1
A6 1

3 00d
d

(00d
d)

1 OP
+2

ll 1 FFF
F

-- 1 OP
+2

ff 1

4 hhll (hhll
)

1 X+f
f

(X+
ff)

1 FFF
F

-- 1

5 Y+f
f

(Y+
ff)

1

 LDAB (IMM) LDAB (DIR) LDAB (EXT) LDAB

(IND,X)
LDAB

(IND,Y)
Cycle Add

r
Dat

a
R/
W*

Add
r

Dat
a

R/
W*

Add
r

Dat
a

R/
W*

Add
r

Dat
a

R/
W*

Add
r

Dat
a

R/
W*

1 OP C6 1 OP D6 1 OP F6 1 OP E6 1 OP 18 1
2 OP

+1
ii 1 OP

+1
ii 1 OP

+1
hh 1 OP

+1
ff 1 OP

+1
E6 1

3 00d
d

(00d
d)

1 OP
+2

ll 1 FFF
F

-- 1 OP
+2

ff 1

4 hhll (hhll
)

1 X+f
f

(X+
ff)

1 FFF
F

-- 1

5 Y+f
f

(Y+
ff)

1

Motorola M68HC11 Reference Manual A-17

82

HC11_143.PCB

Layer 1

Component Side

Figure Error! No text of specified style in document. -3 HC11-143 Port Access Board

83

BUFFALO MONITOR QUICK USERS REFERENCE

M68HC11 EVB

Command Line Format
>command [parameters] <CR>
where:
 > EVB/BUFFALO monitor prompt
 command EVB/BUFFALO command
 [parameters] required and/or optional parameters
 <CR> "RETURN" or "ENTER" key

Note: Bolded text in examples must be entered by the user.

Number Base Convention
All numerical data is assumed to be in HEX. "$" or "%" symbols in front of numbers are
not allowed.

Editing
CTRL-H == backspace on command line
<BACKSPACE> == abort command
<SPACE> == continue modifying data on this line

EVB/BUFFALO Commands (incomplete listing)
ASM On-board Assembler/Disassembler

ASM address

Displays assembly language for specified address. User may change the instruction and/or
data. Labels may not be used.

Use <CR> to advance to next line of code.

Use <BACKSPACE> to abort on-board assembly.

Example:

>ASM C000
C000 ??? ???
 >CLRA <CR>
C001 ??? ???
 >LDAB D001 <CR>
C004 ???
 >CLR D002 <CR>
C007 ???

84

 >CLR D003 <CR>
C00A ??? ???
 >CMPB #00 <CR>
C00C ???
 >BGT C011 <CR>
C00E ???
 ><BACKSPACE>
>

G Go or execute command
G address

Begins execution of a program at the
specified address. The program must
provide a jump instruction to get back to
the BUFFALO prompt.

Example:

>G C000

HELP Help display for monitor commands

HELP

LOAD T Download an assembled file from a PC

LOAD T
Used for downloading files assembled using AS11 from a PC.

MD Memory Display: Display memory to terminal screen.
MD address_start [address_stop]

Displays memory 16 bytes per line. Display will begin on an even 16 byte memory
boundary. If no address_stop is given, 9 lines will be displayed. If address_stop is less than
address_start, 1 line will be displayed.

Example:

>MD D000 D010

D000 04 03 00 0C 55 55 55 55 55 55 55 55 55 55 55 55...

>MD D003 1

D000 04 03 00 0C 55 55 55 55 55 55 55 55 55 55 55 55...

85

MM Memory Modify: Display and modify memory contents.
MM address

Displays memory and gives the user a chance to modify it.

Use the <SPACE> key to advance one byte. Use CTRL-H backup one byte. Use <CR> to
return to the BUFFALO prompt.

Examples:

>MM D000
D000 55 04<CR>
>
>MM D000
D000 55 04 55 03<CR>
>

RM Register Modify: Display and modify 68HC11 registers.
RM [p,y,x,a,b,c,s]

Displays the contents of the 68HC11's registers. Also gives the user a chance to modify
them.

Registers include: P - program counter
 Y - index register Y
 X - index register X
 A - accumulator A
 B - accumulator B
 C - condition codes (flags)
 S - stack pointer.

Examples:
>RM
P-C007 Y-7982 X-FF00 A-04 B-00 C-C0 S-0068
P-C007 C000 <SPACEBAR>
Y-7982 6000 <SPACEBAR>
X-FF00 7000 <SPACEBAR>
A-04 05 <CR>
>

>RM A
P-C007 Y-7982 X-FF00 A-04 B-00 C-C0 S-0068
A-04 05 <CR>

86

T Trace Instructions
T [n]

The trace instruction allows the user to execute a program n instructions a time. The user
must set the program counter to the correct starting address before using the trace
command. The machine code for the instruction will be displayed along with the registers
after each instruction.

Examples:

>T 1

Op-C1
P-C007 Y-7982 X-FF00 A-04 B-00 C-C0 S-0068

87

AS11 TOP-10 BOO-BOOS

(68HC11) Assembler

This is a list of the top 10+ reasons a 68HC11 assembly language program will not run
correctly. Many programs will compile and do something, but not what you want.

1. Missing a "#". Motorola defaults to direct or extended addressing mode. "#" specifies
immediate addressing mode.

2. Using signed branches on unsigned data. AS11 has both signed & unsigned conditional
branches. Ex: bgt (branch greater than) verses bhi (branch if higher).

3. Flow chart was drawn after the code was written. The program doesn't do what you wanted
it to do because you didn't really know what you wanted it to do and when to do it when you
started. Flow charts can be skipped for simple programs, but do help for larger problems.
Think before you type. Programming ≠ Coding.

4. Missing a "$". AS11 defaults to decimal. The "$" is needed when using hex data with AS11.
BUFFALO only allows HEX. No "$" is needed. No "$", or any other prefix can be
entered.

5. Loading a 16-bit value into an 8-bit location. (or vice-versa)

6. Improper ending for embedded code. Use (in)finite loop or jump to monitor.

7. Motorola: Little Endian -- On reads: high byte first, low byte second.

8. Saving and Restoring registers from stack on subroutine calls. Pushes & Pulls.

9. Memory usage: Address space, ROM, RAM, r/w bits

10. high byte AccD == AccA, low byte AccD == AccB

11. Extra "$", or Extra "#"

12. System initialization: variables, i/o, stack, ...

13. EVB PortE, bit 0, must be logic 0 on power-up to boot BUFFALO. Otherwise boots
at E2.

14. Memory conflict with BUFFALO monitor. BUFFALO uses Page 0 memory locations: $36
to $FF

88

AS11.EXE REFERENCE

The IBM PC - to - 68HC11 Cross-Assembler

GENERAL
The AS11.EXE cross-assembler runs on an IBM PC compatible (80x86 microprocessor)
computer, but produces source code for the 68HC11 microprocessor. Command line
arguments specify the filenames to assemble.

The assemblers accept options from the command line to be included in the assembly.
These options are the following:

l enable output listing.
nol disable output listing (default).
cre generate cross reference table.
s generate a symbol table.
c enable cycle count.
noc disable cycle count.

The command line looks like this :

>as11 file1 file2 ... [- option1 option2 ...]

Example:

>as11 file.asm -l cre >file.lst

This command assembles file "file.asm" with an output listing and a cross reference table.
The output listing will be sent to a file named "file.lst" using DOS indirection.

The `S1' formatted object file is placed in file "file.S19", the listing and error messages are
written to the standard output. If multiple files are assembled, the "S1" file will be placed
under the first file's name.S19.

The listing file contains the address and bytes assembled for each line of input followed by
the original input line (unchanged, but moved over to the right some). If an input line
causes more than 6 bytes to be output (e.g. a long FCC directive), additional bytes (up to 64)
are listed on succeding lines with no address preceding them.

The "file.s19" file can be uploaded from a PC to the 68HC11EVB, or an EPROM can be
programmed using the Allpro Device Programmer.

Equates cause the value of the expression to replace the address field in the listing. Equates
that have forward references cause Phasing Errors in Pass 2.

89

EXPRESSIONS
Expressions may consist of symbols, constants or the character '*' (denoting the current
value of the program counter) joined together by one of the operators: + - * / % & | ^.
The operators are the same as in the c programming language.

+ add
- subtract
* multiply
/ divide
% remainder after division
& bitwise and
| bitwise or
^ bitwise exclusive-or

Expressions are evaluated left to right and there is no provision for parenthesized
expressions. Arithmetic is carried out in signed twos-complement integer precision (16 bits
on the IBM PC). Constants are constructed with the same syntax as the Motorola MSDOS
assembler:

' followed by ASCII character TEXT FCC 'Hello!
$ followed by hexadecimal constant ORG $0000
@ followed by octal constant
% followed by binary constant FCB %01001111
 digit decimal constant LDAA 100

ERRORS
Error diagnostics are placed in the listing file just before the line containing the error.
Format of the error line is:

Line_number: Description of error
 or
Line_number: Warning --- Description of error

Errors of the first type in pass one cause cancellation of pass two. Warnings do not cause
cancellation of pass two but should cause you to wonder where they came from.

Error messages are meant to be self-explanatory.

If more than one file is being assembled, the file name precedes the error:

File_name,Line_number: Description of error

Finally, some errors are classed as fatal and cause an immediate termination of the assembly.
Generally these errors occur when a temporary file cannot be created or is lost during the
assembly. Consult your local guru if this happens.

90

DIFFERENCES
For indexed addressing, the comma is required before the register; `inc x' and `inc ,x' are
not the same.

Macros are not supported. (try M4 or M6)

The force size operators ('>' and '<') are implemented for all assemblers.

PSUEDO-OP-CODES
The only pseudo-ops supported are:

ORG define starting address for following code
FCC Form Constant Character; define text strings
FCB Form Constant Byte; define byte constants
FDB Form Double Byte; define a two byte constant
EQU Equate; substitute one text string for another
RMB Reserve memory space for variables
BSZ Block Store Zeros; fill memory with so many zeros
ZMB Zero Memory Bytes; same as BSZ
FILL fill memory with data; FILL value, #bytes
PAGE start new page in listing
OPT The OPT pseudo-op allows the following operands:
 nol Turn off output listing
 l Turn on output listing (default)
 noc Disable cycle counts in listing (default)
 c Enable cycle counts in listing (clear total cycles)
 contc Re-enable cycle counts (don't clear total cycles)
 cre Enable printing of a cross reference table
 s generate a symbol table

Some of the more common pseudo-ops are not present:

SPC Use blank lines instead
END The assembly ends when there is no more input
TTL use `pr' to get headings and page numbers
NAM[E] Did you ever use this one anyway?

The above 4 pseudo-ops are recognized, but ignored.

91

DETAILS
Symbol: A string of characters. The first character may not be a digit. The string of
characters may be from the set:

 [a-z][A-Z]_.[0-9]$

(. and _ count as non-digits). The `$' counts as a digit to avoid confusionwith
hexadecimal constants. All characters of a symbol are significant, with upper and lower
case characters being distinct. The maximum number of characters in a symbol is currently
set at 15.

The symbol table has room for at least 2000 symbols of length 8 characters or less.

Label: A symbol starting in the first column is a label and may optionally be ended with a ':'.
A label may appear on a line by itself and is then interpreted as:

Label EQU * (defines value of label as current address)

Mnemonic: A symbol from the microprocessor's instruction set preceded by at least one
whitespace character. Upper case characters in this field are converted to lower case before
being checked as a legal mnemonic. Thus `nop', `NOP' and even `NoP' are recognized as
the same mnemonic.

Note that register names that sometimes appear at the end of a mnemonic (e.g. nega or stu)
must not be separated by any whitespace characters. Thus `clra' means clear
accumulator A, but that `clr a' means clear memory location `a'.

Operand: Follows mnemonic, separated by at least one whitespace character. The contents
of the operand field is interpreted by each instruction.

Whitespace: A blank or a tab

Comment: Any text after all operands for a given mnemonic have been processed or, a line
beginning with '*' up to the end of line or, an empty line.

Continuations: If a line ends with a backslash (\) then the next line is fetched and added to
the end of the first line. This continues until a line is seen which doesn't end in \ or until
MAXBUF characters have been collected (MAXBUF >= 256).

92

68HC11 PARALLEL INPUT & OUTPUT

HANDSHAKE I/O SUBSYSTEM

Register Offset
PIOC $1002
PORTC $1003
PORTB $1004
PORTCL $1005
DDRC $1007

SIMPLE I/O

Port B is output only.

Port C bits are input or output as determined by DDRC.
1 = output, 0 = input.

SIMPLE STROBE (HANDSHAKE)

Port B == strobed output with STRB

Port C == latching input port with STRA

Independent of each other.

PORT B CODE

PORTB equ $1004 define PortB address
PIOC equ $1002 define PIOC address

 ldaa #%00000001 bit4: HNDS=0 (Simple Strobe Mode)
 staaPIOC bit0: INVB=1 (Active High Pulse)
 staa PORTB write to PortB

93

PORT B TIMING

PH2

(internal)

E

Write Port B

new Port B dataold dataPort B

Strobe B
Figure 9-4 Port B Timing Waveforms

Note: INVB control bit in PIOC allows for STRB to be inverted.

PORT C CODE

* sample code for simple strobed input (code not tested)
 org $c000 org at USER 8K ram
_PORTCL equ $05 def PORTCL offset
_PIOC equ $02 def PIOC offset
REGBASEequ $1000 def IO Register base addr
BIT7 equ %10000000 bit 7 mask
BIT4 equ %00010000 bit 4 mask
BIT1 equ %00000010 bit 1 mask
STAF_MSK equ BIT7 def STAF mask
HNDS_MSK equ BIT4
EGA_MSK equ BIT1
PIO_MODE equ EGA_MSK | (HNDS_MSK ^ $ff)
* EGA = 1 ---> +edge latching
* HNDS = 0 --> simple handshake mode

* Set Parallel I/O Mode
 ldx #REGBASE
 ldaa #PIO_MODE
 staa_PIOC,x

* Wait until data has been strobed into Port C
* (Loop while STAF (bit 7 of PIOC) is clear.)
LOOP brclr _PIOC,x STAF_MSK LOOP

 ldaa _PORTCL,x read latched Port C data

* Note: Read of latched Port C resets STAF.

94

PORT C TIMING

PH2

(internal)

E

STRA

Port C

STAF
Figure 9-5 Port C Timing Waveform

FULL-INPUT HANDSHAKE MODE

Port C: Input port accessed through PORTCL register.
Strobe B: Output acting as a "ready" signal to external device.
Strobe A: Edge sensitive latching input.

PH2
(internal)

E

read CL

STRA

Port C

STRB
(interlocked)

(pulsed)

Internal Operation
Figure 9-6 Parallel I/O Full-Input Handshake Mode

FULL-OUTPUT HANDSHAKE MODE

Port C: Output port (normal or 3-state (DDRC control).
Strobe B: Output "ready" signal that data is available.
Strobe A: Input acknowledge signal.

See Figure 7-26 (page 7.41) of HC11 Reference Manual (PINK).

CENTRONICS PARALLEL PRINTER PORT

• 8-bit parallel interface
• 1K char/sec maximum

95

• TTL logic levels
• 3-line handshaking

According to the PANASONIC KX-P1091i manual:
"When the printer is processing data, the BUSY signal is high. The printer will not accept
new data from the computer. After the processing is completed, the BUSY signal goes low.
(The BUSY signal is also high when the printer is OFF LINE). When this occurs, the
ACK* signal goes low indicating to the computer that the data has been processed and the
printer is ready to accept more data. This handshaking routine occurs each time a character
is sent to the printer."

Table 9-6 Standard 36-pin Centronics connector

Signal
Pin

Return
side pin

Signal Direction

1 19 STROBE* INPUT
2 20 DATA1 INPUT
3 21 DATA2 INPUT
4 22 DATA3 INPUT
5 23 DATA4 INPUT
6 24 DATA5 INPUT
7 25 DATA6 INPUT
8 26 DATA7 INPUT
9 27 DATA8 INPUT
10 28 ACK* OUTPUT
11 29 BUSY OUTPUT
12 PO OUTPUT
13 SLCT OUTPUT
14 AFXT*
15
16 SG
17 FG
18 +5V OUTPUT
31 PRIME* INPUT
32 ERROR* OUTPUT
33 SG
34
35
36

96

Table 9-7 IBM PC Printer connector (25-pin)

Pin Signal Pin Direction
1 STROBE* 10 ACK*
2 DATA1 11 BUSY*
3 DATA2 12 PO
4 DATA3 13 SLCT
5 DATA4 14 AFXT*
6 DATA5 15 ERROR*
7 DATA6 16 PRIME*
8 DATA7 17 SLCT IN
9 DATA8 18 FG

19-25 SG, signal grounds

SIGNAL DEFINITIONS

STROBE* -edge trigger (clock) input to printer.
DATA1 - DATA8 8-bit data
ACK* Acknowledge signal that printer has data.
BUSY Printer status signal. BUSY = 1 when:

• Receive buffer is full.
• Printer is processing data.
• Printer is OFF LINE.
• Printer is in an error condition.

PO PO = 1 when printer is out of paper.
SLCT SLCT = 1 when printer is ON LINE.
AFXT*When AFXT* = 0, a line feed <LF> is added to each <CR>.
SG Signal Ground.
FG Frame Ground.
+5V +5V reference signal only.
PRIME* Reset input to printer.
ERROR* Error or "fault" output status signal.

97

data

STROBE*

BUSY

ACK*

T1 T2 T3 T4

T5

Figure Error! No text of specified style in document.-7 Centronics Parallel Interface
Timing Diagram

Table Error! No text of specified style in document. -8 Centronics Timing Specifications

 Description Time
T1 Data Setup 0.5 us (min)
T2 Strobe Pulse Width 1.0 us (min)
T3 Data Hold 0.5 us (min)
T4 Ack Pulse Width 5.0 us (max)
T5 Response Time 1.0 ms (typ)*

* or less when buffer not full.

98

68HC11 TIMING FUNCTIONS

68HC11 Timing Features
• 16-bit Main Timer
• Three Input Capture Registers (4 on E9)
• Five Output Compare Registers
• Real-Time Clock with Interrupt
• Pulse Accumulator
• COP Watchdog Timer
• Consistant Machine Cycle Times

Table Error! No text of specified style in document. -9 Timer Registers

Register Offset Description BIT(S)
CFORC $0B Compare Force FOC1 – FOC5
CONFIG $3F Configuration Control NOCOP
COPRST $3A COP Timer Arm/Reset all, $55, $AA
OC1D $0D Output Compare 1 Data OC1D7 – OC1D3
OC1M $0C Output Compare 1 Mask OC1M7 – OC1M3
OPTION $39 System Option CR1, CR0
PACNT $27 Pulse Accumulator Count all
PACTL $26 Pulse Accumulator Control DDRA7, PAEN, PAMOD, PEDGE,

RTR1, RTR0
TCNT $0E Timer Counter Register (16-bit)
TCTL1 $20 Timer Control 1 OM2 – OM5, OL2 – OL5
TCTL2 $22 Timer Control 2 EDG1A,B – EDG3A,B
TFLG1 $23 Timer Interrupt Flag 1 OC1F – OC5F, IC1F – IC3F
TFLG2 $25 Timer Interrupt Flag 2 TOF, RTIF, PAOVF, PAIF
TIC1 $10 Input Capture Register 1 (16-bit)
TIC2 $12 Input Capture Register 2 (16-bit)
TIC3 $14 Input Capture Register 3 (16-bit)
TMSK1 $22 Timer Interrupt Mask 1 OC1I – OC5I, IC1I – IC3I
TMSK2 $24 Timer Interrupt Mask 2 TOI, RTII, PAOVI, PAII, PR1, PR0
TOC1 $16 Output Compare 1 (16-bit)
TOC2 $18 Output Compare 2 (16-bit)
TOC3 $1A Output Compare 3 (16-bit)
TOC4 $1C Output Compare 4 (16-bit)
TOC5 $1E Output Compare 5 (16-bit)

99

Table Error! No text of specified style in document. -10

Register BIT Pos Function Def
CFORC FOC1 7 Write "1" to Force a Compare 0
 FOC2 6 0
 FOC3 5 0
 FOC4 4 0
 FOC5 3 0
CONFIG NOCOP 2 0 = COP Watchdog enabled

(forces Reset on timeout)
U

COPRST all - Write $55, then $AA to Reset COP U
OC1D OC1D7 7 Data written to Port A, bit 7, on an OC1

compare (if OC1M7 is set)
U

 OC1D6 6 U
 OC1D5 5 U
 OC1D4 4 U
 OC1D3 3 U
OC1M OC1M7 7 If OC1M7 is set, data in OC1D7 is written to

Port A on OC1 compares
0

 OC1M6 6 0
 OC1M5 5 0
 OC1M4 4 0
 OC1M3 3 0
OPTION CR1,

CR0
1, 0 COP Rate: 00 == ÷1, 01 == ÷4

10 == ÷16, 11 == ÷64,
0,0

PACNT all all Pulse Accumulator Count U
PACTL DDRA7 7 Data Direction Bit, Port A, Bit 7 0
 PAEN 6 Pulse Accumulator Enable = 1 0
 PAMOD 5 PA Mode, 0 = Event Counter

1 = Gate Time Accumulation
0

 PEDGE 4 PA Edge Control
0 = -Edge, High-Level Enable
1 = +Edge, Low-Level Enable

0

 RTR1,
RTR0

1,0 RTI Interrupt Rate, 00 = ÷213

01 = ÷214, 10 = ÷215, 11 = ÷216

0

TCTL1 OM2,
OL2

7,6 Output Compare Pin Action
00 == no action
01 == Toggle OC2 output pin
10 == Clear OC2 output pin
11 == Set OC2 output pin

0,0

 OM3,
OL3

5,4 0,0

100

 OM4,
OL4

3,2 0,0

 OM5,
OL5

1,0 0,0

TCTL2 EDG1B,
EDG1A

5,4 Input Capture Edge Control
00 == Capture Disabled
01 == Rising Edges Only
10 == Falling Edges Only
11 == Any Edge

0,0

 EDG2B,
EDG2A

 0,0

 EDG3B,
EDG3A

 0,0

TFLG1 OC1F 7 Output Compare 1 Flag
1 ==> Compare Occured

0

 OC2F 6 0
 OC3F 5 0
 OC4F 4 0
 OC5F 3 0
 IC1F 2 Input Capture 1 Flag

1 == > Capture Occured
0

 IC2F 1 0
 IC3F 0 0
TFLG2 TOF 7 Timer Overflow Flag 0
 RTIF 6 Real Time Interrupt Flag 0
 PAOVF 5 PA Overflow Flag 0
 PAIF 4 PA Input Edge Detect Flag 0
TMSK1 OC1I 7 Output Compare 1 Interrupt Enable

1 == Enabled
0

 OC2I 6 0
 OC3I 5 0
 OC4I 4 0
 OC5I 3 0
 IC1I 2 Input Capture 1 Interrupt Enable

1 == Enabled
0

 IC2I 1 0
 IC3I 0 0
TMSK2 TOI 7 Timer Overflow Interrupt Enable 0
 RTII 6 Real Time Interrupt Enable 0
 PAOVI 5 PA Overflow Interrupt Enable 0
 PAII 4 PA Edge Detect Interrupt Enable 0
 PR1, PR0 1,0 Timer Prescaler Select Bits

00 == ÷1, 01 == ÷4,
10 == ÷8, 11 == ÷16

0,0

101

68HC11 ANALOG-TO-DIG ITAL CONVERTER

68HC11 ADC FEATURES

• 8-bit Analog-to-Digital Converter
• 8-channel multiplexed input (8 inputs, 1 ADC)
• Successive Approximation Method
• Error +/- 1 LSB
• Reference Inputs
• Thirty-two (32) MCU E clocks per conversion
• E clock or internal RC oscillator
Table 9-11Registers

Register Offset Description BIT(S)
OPTION $39 HC11 Option Register ADPU, CSEL, DLY
ADCTL $30 ADC Control/Status CCF, SCAN, MULT,

CD, CC, CB, CA
ADR1 $31 ADC Result Register 1 all
ADR2 $32 ADC Result Register 2 all
ADR3 $33 ADC Result Register 3 all
ADR4 $34 ADC Result Register 4 all

Register BIT Pos Function Def
OPTION ADPU 7 ADC Power Up, 1 == ON 0
 CSEL 6 ADC Clock Select, 0 == E,

1== Internal RC
0

 DLY 4 Oscillator Delay, 1==delay after STOP to
allow oscillator to stabilize

1

ADCTL CCF 7 Conversions Complete Flag, 1== done,
Cleared on write to ADCTL

0

 SCAN 5 Continuous Scan Control,
0 == one set of 4 conversions,
1 == cycle of conversions

U

 MULT 4 Multiple Channel Select,
0 == 4 conversion on 1channel,
 CD-CA specify channel
1 == convert each channel of a 4 ch.
group specified by CD, CC

U

 CD,CC,
CB,CA

3,2,1
,0

ADC Channel number,
0 - 7 are PortE inputs

U

102

HARDWARE INTERFACE

ANALOG DATA INPUTS

Port E
pin

+

- Rx

1K
Analog
Input

Figure 9-8 Analog Input Protection Buffer

REFERENCE VOLTAGE INPUTS

VRH High Reference Voltage typical VRH = 5.0V
VRL Low Reference Voltage VLH = 0.0V

The ADC can be operated with: VRH - VLH > 2.5 V

68HC11

V

V

RH

LH

5 V

1K

1K
 0.1uF

Figure 9-9: ADC Voltage Reference Inputs

SINGLE CHANNEL OPERATION, ONE TIME

MULT = 0, SCAN = 0
• Channel specified by CD, CC, CB, CA is converted 4 times.
• Four results are stored automatically in: ADR1, ADR2, ADR3, ADR4
• A write to ADCTL starts each conversion and transfer set.

Single Channel Operation, Continuous
MULT = 0, SCAN = 1

• Channel specified by CD, CC, CB, CA is continuously converted until SCAN bit is
changed.

• Results are stored automatically in: ADR1, ADR2, ADR3, ADR4, then back to writing
over ADR1,...

• A write to ADCTL starts the conversion and transfer process.

103

MULTIPLE CHANNEL OPERATION, ONE SET

MULT = 1, SCAN = 0
• Four Channels specified by CD, CC are each converted once.
• Four results are stored automatically in: ADR1, ADR2, ADR3, ADR4
• A write to ADCTL starts each conversion and transfer set.

MULTIPLE CHANNEL OPERATION, CONTINUOUS

MULT = 1, SCAN = 1
• Four Channels specified by CD, CC are continuously converted until SCAN bit is

changed.
• Results are stored automatically in: ADR1, ADR2, ADR3, ADR4, then back to writing

over ADR1,...
• A write to ADCTL starts the conversion and transfer process.

SAMPLING AND CONVERSION SPEED

No hardware level support is available for automating an ADC sampling process. The
ADCTL register has a conversion complete flag (CCF). This flag is set after the first 4
conversions. It is only cleared by a write to ADCTL. It is not automatically cleared during
continuous scan operations.

Software sampling support is available using the Real-Time Clock or Main Timer on the
HC11. Each has interrupt support.

The HC11 successive approximation ADC requires 32 E -clocks per 8-bit conversion plus
initialization time. The fastest conversion available is when ADR1 is read 32 E -clocks after a
write to ADCTL.

FILTERING, AVERAGING, AND DATA PROCESSING

It is recommended to low-pass or band-pass analog signals before being input to the HC11.
Averaging, and/or other digital signal processing may be performed with software in the
HC11 to reduce noise, increase resolution, or achieve some other function.

STOP AND WAIT MODES

When STOP or WAIT modes are entered in the HC11, any conversion process is suspended
at that point. Upon "Normal" operation, the channel(s) will be resampled, and conversion
continued.

During STOP mode, the E clock oscillator circuit is turned off. Oscillators require some
amount of time to stabilize. An unstable clock will cause errors in ADC conversions (also
other timer functions, and EEPROM programming are affected). Is the DLY bit in the

104

OPTION register is set prior to the STOP or WAIT, the HC11 will delay all operations
(approximately 4,000 E-clocks) after exit from STOP.

105

68HC11 INTERRUPTS

Table 9-12 Interrupt Vector Assignments

Vector
Address

Interrupt Source CC
Mask

Local Mask
Bit

Local Mask
Register

FFC0, C1 Reserved

FFD4, D5 Reserved
FFD6,D7 SCI serial system I bit see below SCCR2
FFD8,D9 SPI Serial Transfer Complete I bit SPIE SPCR
FFDA,DB Pulse Accumulator Input Edge I bit PAII TMSK2
FFDC,DD Pulse Accumulator Overflow I bit PAOVI TMSK2
FFDE,DF Timer Overflow I bit TOI TMSK2
FFE0,E1 Timer Output Compare 5 I bit OC5I TMSK1
FFE2,E3 Timer Output Compare 4 I bit OC4I TMSK1
FFE4,E5 Timer Output Compare 3 I bit OC3I TMSK1
FFE6,E7 Timer Output Compare 2 I bit OC2I TMSK1
FFE8,E9 Timer Output Compare 1 I bit OC1I TMSK1
FFEA,EB Timer Input Capture 3 I bit IC3I TMSK1
FFEC,ED Timer Input Capture 2 I bit IC2I TMSK1
FFEE,EF Timer Input Capture 1 I bit IC1I TMSK1
FFF0,F1 Real Time Interrupt I bit RTII TMSK2
FFF2,F3 IRQ* external pin I bit none

" parallel I/O I bit STAI PIOC
FFF4,F5 XIRQ* pin X bit none
FFF6,F7 SWI none none
FFF8,F9 Illegal Opcode Trap none none
FFFA,FB COP Failure (Reset) none NOCOP CONFIG
FFFC,FD COP Clock Monitor Fail (Reset) none CME OPTION
FFFE,FF RESET* none none
Table 9-13 SCI Serial System Interrupts

Interrupt Cause Local
Mask Bit

Locak Mask
Register

Flag Bit Flag
Register

Receive Data Register Full RIE SCCR2 RDRF SCSR
Receiver Overrun RIE SCCR2 OR SCSR
Idle Line Detect ILIE SCCR2 IDLE SCSR
Transmit Data Register Empty TIE SCCR2 TDRE SCSR
Transmit Complete TCIE SCCR2 TC SCSR

106

COUNT.A11

* COUNT.A11 Count pulses at an input.
* Two digit bcd output.
* Bruce Hoeppner 11/10/92
* Bounceless input at bit 0 of Port E
* Output to Port B
PORTB equ $1004

org $C000 ;origin in user RAM
* Initialize
MAIN clra

 staa PORTB

* Loop while input = 0
WAIT0 ldab $100a ;read input

andb #$01 ;mask off 7 msbs
bne WAIT0

* Loop while input = 1
WAIT1 ldab $100a ;read input

andb #$01 ;mask off 7 msbs
beq WAIT1

 adda #$01 ;increment AccA
daa ;adjust for bcd
staa $1004 ;write to Port B
jmp WAIT0

107

COUNT.LST

 Assembling count.a11
0001 * COUNT.A11 Count pulses at an input.
0002 * Two digit bcd output.
0003 * Bruce Hoeppner 11/10/92
0004
0005 * Bounceless input at bit 0 of Port E
0006 * Output to Port B
0007 1004 PORTB equ $1004
0008
0009 c000 org $C000 ;origin in user RAM
0010 * Initialize
0011 c000 4f MAIN clra
0012 c001 b7 10 04 staa PORTB
0013
0014 * Loop while input = 0
0015 c004 f6 10 0a WAIT0 ldab $100a ;read input
0016 c007 c4 01 andb #$01 ;mask off 7 msbs
0017 c009 26 f9 bne WAIT0
0018
0019 * Loop while input = 1
0020 c00b f6 10 0a WAIT1 ldab $100a ;read input
0021 c00e c4 01 andb #$01 ;mask off 7 msbs
0022 c010 27 f9 beq WAIT1
0023
0024 c012 8b 01 adda #$01 ;increment AccA
0025 c014 19 daa ;adjust for bcd
0026
0027 c015 b7 10 04 staa $1004 ;write to Port B
0028 c018 7e c0 04 jmp WAIT0

MAIN c000 *0011
PORTB 1004 *0007 0012
WAIT0 c004 *0015 0017 0028
WAIT1 c00b *0020 0022

Number of errors 0
Number of warnings 0

108

COUNT_BR.LST

0001 * COUNT_BR.A11
0002 * Count pulses at an input.
0003 * Two digit BCD output.
0004 * Bruce Hoeppner 11/10/92
0005 * 06/19/94 brset, brclr
0006 * NOTE: modifications not tested
0007 * NOTE: bset, bclr, brset, brclr instructions
0008 * work for direct (page 0) or indexed mode
0009
0010 * Bounceless input at bit0 of PORTE
0011 * Output to PORTB
0012 * Constants - Hardware dependent
0013 1000 REGBASEequ $1000
0014 0000 _PORTA equ $00
0015 0004 _PORTB equ $04
0016 000a _PORTE equ $0a
0017 0001 BIT0 equ %00000001
0018 ***
0019
0020
0021 c000 org $C000 ;origin in user RAM
0022 * Initialize
0023 c000 4f MAIN clra
0024 c001 ce 10 00 ldx #REGBASE
0025 c004 a7 04 staa _PORTB,x ;Initialize Output
0026
0027 * Looking for a POSITIVE EDGE
0028 * First: Loop until input = 0 (loop while bit=1)
0029 c006 1e 0a 01 fc WAIT0 brset _PORTE,x BIT0 WAIT0
0030
0031 * above one line replaces following three,
0032 * and it is more clear
0033 *WAIT0 ldab $100a ;read input
0034 * andb #$01 ;mask off 7 MSBs
0035 * bne WAIT0
0036
0037 * Then: Loop until input = 1 (loop while bit=0)
0038 c00a 1f 0a 01 fc WAIT1 brclr _PORTE,x BIT0 WAIT1
0039
0040 * above one line replaces following three,
0041 * and it is more clear
0042 *WAIT1 ldab $100A ;read input
0043 * andb #$01 ;mask off 7 msbs
0044 * beq WAIT1
0045

109

0046 * Only get here if after a +edge at specified bit
0047
0048 *Increment Count (Use adda so daa works)
0049 c00e 8b 01 adda #$01 ;increment AccA
0050 c010 19 daa ;adjust for BCD
0051
0052 c011 a7 04 staa _PORTB,x ;write to PORTB
0053 c013 7e c0 06 jmp WAIT0 B,x ;write to PORTB
BIT0 0001 *0017 0029 0038
MAIN c000 *0023
REGBASE 1000 *0013 0024
WAIT0 c006 *0029 0029 0053
WAIT1 c00a *0038 0038
_PORTA 0000 *0014
_PORTB 0004 *0015 0025 0052
_PORTE 000a *0016 0029 0038

110

DELAY1M.LST

0001 **
0002 * DELAY1M.A11 N*1ms Delay Routine
0003 * AUTHORS DATE COMMENTS
0004 * JACOBSON/SEVCIK 2/26/90 VERSION 1.0
0005 *
0006 * DESCRIPTION
0007 * THIS ROUTINE GENERATES INTERNAL DELAYS IN
0008 * MULTIPLES OF ONE (1) MILLI-SECOND. THE
0009 * USER ENTERS THE DURATION OF THE DELAY
0010 * (ms) INTO THE X REGISTER
0011 *
0012 * PARAMETERS
0013 * - X REGISTER CONTAINS DURATION (ms)
0014 * - INTERRUPTS ARE NOT AFFECTED
0015 * - SHORTEST DELAY IS 1 ms (X =1)
0016 * - RESOLUTION IS 1 ms
0017 * - MAXIMUM DELAY IS 655,36 ms (X = 0)
0018 ***
0019 * TEST ROUTINE
0020 * user must enter a value into X, then run
0021 000c ORG $COOO
0022 * change operand of next instruction to change
0023 * the delay
0024 000c ce 00 64 TEST ldx #100 ;FOR 100 ms DELAY
0025 000f bd 00 15 JSR DELAY1M ;CALL ROUTINE TO TEST
0026 0012 7e e0 00 JMP $E000;JUMP TO BUFFALO WHEN DONE
0027 **
0028 * DELAY1M N*1ms subroutine
0029 **
0030 0015 36 DELAY1M: PSHA
0031 * Primary Loop
0032 0016 86 c7 DELWT2 LDAA #199 ;199 * 2ND LOOP = 1ms
0033 0018 01 NOP
0034 0019 4a DELWT3 DECA ;SECONDARY LOOP = 1ms/199
0035 001a 01 NOP
0036 001b 21 fc BRN DELWT3 ;BRANCH NEVER = 3 CYCLE NOP
0037 001d 26 fa BNE DELWT3 ;CONTINUE UNTIL 199 --> 0
0038
0039 001f 09 DEX ;# OF 1ms LOOPS
0040 0020 26 f4 BNE DELWT2 ;CONTINUE UNTIL IX = 0
0041
0042 0022 32 PULA
0043 0023 39 RTS
0044 ***
0045 * END DELAY1M

111

0046 *** *

DELAY1M 0015 *0030 0025
DELWT2 0016 *0032 0040
DELWT3 0019 *0034 0036 0037
TEST 000c *0024

112

DELAY5U.LST

0001 **
0002 * DELAY5U.A11
0003 * AUTHORS DATE COMMENTS
0004 * JACOBSON/SEVCIK 2/26/90 VERSION 1.0
0005 *
0006 * DESCRIPTION
0007 * THIS ROUTINE GENERATES INTERNAL DELAYS IN
0008 * MULTIPLES OF FIVE (5) MICRO-SECONDS. THE
0009 * USER ENTERS A MULTIPLIER (16-BIT) INTO THE
0010 * X INDEX REGISTER WHICH DETERMINES THE NUMBER
0011 * OF FIVE MICRO-SECOND INTERVALS
0012 *
0013 * PARAMETERS
0014 * - X REGISTER CONTAINS MULTIPLIER
0015 * - INTERRUPTS ARE NOT AFFECTED
0016 * - SHORTEST DELAY IS 10 us (X < 3)
0017 * - RESOLUTION IS 5 us
0018 * - MAXIMUM DELAY IS 327680 us (X = 64K)
0019 ***
0020
0021 000c ORG $COOO
0022 000c ce 03 e8 ldx #1000 ;FOR TESTING
0023 000f bd 00 15 JSR DELAY5U ;CALL ROUTINE TO TEST
0024 0012 7e e0 00 JMP $E000;JUMP TO BUFFALO WHEN DONE
0025 0015 09 DELAY5U: DEX ;CORRECT FOR JSR/RTS
0026 0016 09 DEX ;OVERHEAD
0027 0017 01 NOP
0028 0018 01 NOP
0029 0019 09 DELWT1: DEX ;DECREMENT MULTIPLIER
0030 001a 01 NOP
0031 001b 01 NOP
0032 001c 26 fb BNE DELWT1
0033 001e 39 RTS
0034 ***
0035 * END DELAY5U
0036 ***
DELAY5U 0015 *0025 0023
DELWT1 0019 *0029 0032

113

INNOTOUT.A11

* INNOTOUT.A11 Read word, NOT it, Write it
* Bruce Hoeppner 01 JAN 94
*
* Read an 8-bit word from PortE.
* Complement the word.
* Write the word to PortB.
* Loop Continuously.
* Essentially this turns the HC11 into an
* Octal Inverter.

* Definitions
PORTB equ $1004
**
* Load program into 8k user RAM
START org $C000

* Read 8-bit word from PortE into AccA
 ldaa $100a
* Complement the word.
 coma
* Write the word to PortB
 staa PORTB

* Jump back to beginning of program
 jmp START

* End of INNOTOUT.A11

114

INNOTOUT.LST

 Assembling innotout.a11
0001 * INNOTOUT.A11 Read word, NOT it, Write it
0002 * Bruce Hoeppner 01 JAN 94
0003 *
0004 * Read an 8-bit word from PortE.
0005 * Complement the word.
0006 * Write the word to PortB.
0007 * Loop Continuously.
0008 * Essentially this turns the HC11 into an
0009 * Octal Inverter.
0010
0011 * Definitions
0012 1004 PORTB equ $1004
0013 **
0014 * Load program into 8k user RAM
0015 c000 START org $C000
0016
0017 * Read 8-bit word from PortE into AccA
0018 c000 b6 10 0a ldaa $100a
0019 * Complement the word.
0020 c003 43 coma
0021 * Write the word to PortB
0022 c004 b7 10 04 staa PORTB
0023
0024 * Jump back to beginning of program
0025 c007 7e 00 00 jmp START
0026
0027 * End of INNOTOUT.A11

Number of errors 0
Number of warnings 0

115

MULT4BIT.LST

 Assembling mult4bit.a11
0001 * MULT4BIT.A11 Multiply using repeated addition
0002 * P = M x N
0003 * Bruce Hoeppner 10/7/89
0004
0005 c000 org $C000 ;origin in user RAM
0006
0007 c000 f6 10 0a ldab $100a ;load M & N into AccB
0008 c003 17 tba ;Copy B to A
0009 c004 c4 0f andb #$0f ;Mask off M from N
0010 c006 44 lsra
0011 c007 44 lsra
0012 c008 44 lsra
0013 c009 44 lsra ;Move M to 4 LSBs
0014 c00a 84 0f anda #$0f ;Mask off N from M
0015 c00c b7 d0 00 staa $d000 ;Store accA in temp
0016 c00f 4f clra ;clear accumulator A
0017
0018 c010 c1 00 multiply cmpb #00 ;check for N = 0
0019 c012 2e 03 bgt addem ;branch to addem when
0020 * ;accB > 0
0021 c014 7e e0 0a jmp $e00a ;when N = 0 you are done
0022 * ;go back to BUFFALO
0023
0024 c017 bb d0 00 addem adda $d000 ;accA = accA + M
0025 c01a 5a decb ;decrement accB
0026 * ;accB = accB - 1
0027 * ;N = N - 1
0028
0029 c01b b7 d0 01 staa $d001 ;store result P
0030
0031 c01e 20 f0 bra multiply
0032
0033 c020 end ;end of MULT.A11

addem c017 *0024 0019
multiply c010 *0018 0031

Number of errors 0
Number of warnings 0

