Intro to Digital Laboratory

EECE143 Lecture 0

EECE 143 Lecture 0: Intro to Digital Laboratory

Syllabus * Class Notes Laboratory Equipment Experiment 0 * Experiment 1

© 2002 J. Chris Perez

Intro to Digital Laboratory	EECE143 Lecture 0
Course Description: Gaining experience in the design, assembly, testing, and trouble-shootin encompass a wide range of topics such as combinational circuits, seque devices, and microprocessors.	D ng of digital electronic circuits. Experiments ntial circuits, clock circuits, programmable logic
Prerequisites: EECE 112 with a minimum grade of C; EECE 041 with a minimum gr BIEN 185 which may be taken concurrently. It is the responsibility of t met. Successful completion of EECE 143 with the proper sequence of	ade of C; and either EECE 190, COEN 030, or he student to ensure that these pre-requisites are prerequisites is a requirement for graduation.
Course Materials: Required: EECE 143 Digital Design Laboratory Manual and Class N EECE 143 Component Kit Engineering & Science Notebook (National 33-610) ON Semiconductor, High-Speed CMOS Data Book Motorola, M68HC11 Reference Manual, 1990.	lotes (PrintWorld)
Optional: EECE Tool Kit Digital Design Text for EECE 112	,
Each student is required to purchase a component package and notebo Each student is required to bring their own breadboard and tools to lab	юк.).
	© 2002 J. Chris Perez

	gital Laboratory	E	ECE143 Lecture (
TENTATIVE Laboratory Schedule				
Laboratory	Title	Lecture Date	Laboratory Date	
0	Introduction to Digital Lab	Jan 14	Jan 22,24	
1	Boolean Implementation	Jan 14	Jan29,31	
2	Standard Combinational Circuits	Feb 4	Feb 5,7	
3	One shots, Clocks & Counters	Feb 4	Feb 12,14	
4	Flip flops, Registers & Shift registers	Feb 11	Feb 19,21	
5	Programmable Logic Devices 1	Feb 18	Feb 26,28	
6	Programmable Logic Devices 2	Feb 25	Mar 5,7	
7	Microprocessor 1 – Intro to Microcontrollers Written Report	Mar 4	Mar 19,21	
8	Microprocessor 2 – Software	Mar 18,25	Apr 2,4	
	Written Report Due	Mar 25		
9	Microprocessor 3 – Countdown timer	Apr 8,15	Apr 16,18,23,25	
10	Microprocessor 10 – Soda Machine Controller	Apr 22	Apr 30, May 2	
	Evaluation & SCOT	Apr 29	2	

ntro to Digital Laboratory	EECE	143 Lecture 0		
0	Grading			
One Introductory Lab @ 20 pts	20 points	93.0-100.0	А	
Four Discrete Logic Labs @ 30 pts	120 points	89.0-92.9	AB	
Two PLD Labs @ 30 pts	60 points	85.0-88.9	В	
Four Microprocessor Labs @ 30 pts	120 points	81.0-84.9	BC	
Eleven laboratory written reports @ 23	5 pts 275 points	77.0-80.9	С	
Written Report	50 points	73.0-76.9	CD	
Five Quizzes @ 10 pts	50 points	70.0-72.9	D	
Lab Notebook	55 points	Below 70.0	F	
Total	750 points			
Each Lab consists of a series of experiments or procedures. Each Lab (except the introductory lab) will be graded on the basis of 55 total points, with 10 points assigned to the preparation , 20 points assigned to the actual Lab work and 25 points assigned for laboratory written report.				
		© 2002 J	J. Chris Perez	

Intro to Digital Laboratory	EECE143 Lecture 0
Lab Teams: Lab teams consisting of two students will be forme period. It is expected that both team members will contribut	ed during the first lab te to ALL the lab work.
Laboratory Preparation: Each student is responsible for mainta Laboratory Notebook. (National 33-610) The preliminary lab sheets, designing circuits, performing calculations, answering written in the Lab Notebook. Each student is required to per enter it into his/her notebook. The lab assistant will examine period and assign a grade based upon the quality and content the end of the semester all notebooks will be collected for a f	aining his/her own o work of preparing data questions, etc. should be form pre-lab work and your notebooks during lab s of your pre-lab work. At inal grade by the instructor.
Lab Work: Each lab team must be "checked out" by the TA. Cl confirm that the actual lab work as recorded in the lab notebo and that the lab station has been properly cleaned up. The TA data acquired during the lab period.	heck-out will be used to ook has been completed A will initial and date all the
Each lab should be completed during the lab period. If a group is work, they may complete it in the Open Laboratory or in the granted special permission by the instructor. The work must laboratory exercises are complete. All lab work should be con laboratory period.	s unable to complete the lab digital laboratory, if be checked to verify that all npleted <u>before</u> the next
	© 2002 J. Chris Perez

Intro to Digital Laboratory	EECE143 Lecture 0
Laboratory Written Reports: Reports are due one week after the lab se performed at the beginning of the next lab period. Each written report a discussion of the goals of the laboratory, a description of the desig the laboratory, complete schematic diagrams, completed data tables, results and conclusion. Written reports should be typed double-space done with a computer or hand-drawn <u>NEATLY</u> .	ection that lab work is to be ort shall include the following: on of the circuitry involved in , an analysis of your laboratory ced and all drawings should be
Written Research Report: A 5-10 page written research report is requir will perform research on one aspect of digital electronics and how it world today. Students are encouraged to perform research online as Papers should be typed double-spaced and complete with a list of so	red by each student. Stu dents is used in industry and in the well as traditional means. ources.
Assistance in the Lab: Students should be prepared to learn to operate with little or no help. The TA is available in the lab to help the stude of the equipment, to monitor their safety and security, to assist the i proper and sufficient equipment/devices/ICs are available to the stuwork, to monitor the security of the equipment, and to identify inop appropriate steps for necessary repairs.	e most laboratory equipment ents master the basic operation instructor in ensuring that udents to carry out the lab berative equipment and take
Although the TA and the instructor are available, students must take prin design, construction, trouble-shooting, and operation of their circuit instructor are not responsible for debugging the circuits, verifying th circuit wiring.	mary responsibility for the ts. The TA and/or the ne designs and checking the © 2002 J. Chris Perez

Intro to Digital Laboratory	EECE143 Lecture 0
Notebook Fo	rmat
Cover: "EECE 143", EECE 143 Digital Electronics Laboratory, "Lab N Year, Lab Section number.	Notebook", your name(s), Semester and
1st page: Table of Contents Experiment #, Title, Date, Page #s	
2nd page: blank	
3rd page and more: Experiments	
Pre-Lab	
Title, Name(S), Date	
Equipment Check List: Device, Mue #	
General Pre-Lab Questions And Problems.	
Schematic Diagram Or Circuit Diagram With Parts List	
Data Tables And Results	
Empty Columns For Measured Data	
Completed Theoretical Data	
Comments Section	
Troubleshooting Summary	
	© 2002 J. Chris Perez

Intro to Digital Labo	oratory			EECE143 Lecture
	Sar	nple Combinational Ex Bruce Hoe	Prel Boolean Imple speriment #1 ppner & Teresa 8 JAN 93	ab ementations a Allen
Equi	penent. Brown	Cross station.		
	Device	Masufacturer	Model	MUE#
7	Oscope	HP	1652B	231365
4	Design Station	E&L Instr.	CADET	21107
1	DMM	HP	3435A	9694
	AND-OR Impl	ementation	A = w'x + wx	
	AND 7	46008 111	14 7	
	OR 7	48C32 122	14 7	
	NOT T	4HC04 U3	14 7	
				© 2002 J. Chris Perez

Intro to Digital Laboratory #O: Laboratory #O: Digital lab Introduction Earn to use the Agilent 54622D Mixed Signal Oscilloscope functions Learn to use the Agilent 54622D Mixed Signal Oscilloscope functions Learn to use the CADET II electronic training station Experiment with digital ICs, Schmitt gates, and clock circuits. Preparation: Prepare your notebooks as described in Chapter 1 of the Class No tes. Read the entire section of this laboratory exercise in this Laboratory Manual. Also read and familiarize yourself with the tutorial sections for the logic an alyzer and CADET board. The tutorials are found in Chapter 2 of the Class Notes. Prepare the necessary data tables in your notebook for each Experiment Procedure. You may wish to pre-build the Schmitt gate clock circuit in Figure 0.1.

© 2002 J. Chris Perez

<section-header><section-header>Intro to Digital Laboratory ECEC143 Lecture 0 EDECLAS LECTURE 0

Intro to Digital Laboratory	EECE143 Lecture 0			
More Logic Families				
CMOS 4000 Series	Emitter-Coupled Logic (ECL)			
CMOS stands for Complementary Metal Oxide Semiconductor. Gates are made with pairs of MOS transistors (one N -channel, one P -channel). Typically, one of the two transistors is "off". This accounts for extremely low power consumption. Another advantages of 4000 series CMOS is a high noise margin. CMOS gates have high input impedance. Fanout is limited more by capacitive rather than by DC loading.	ECL gates have lower propagation delays (higher speeds) than TTL. Gates are designed so transistors do not saturate when they turn on. Logic 1 (High) is -0.8 V. Logic 0 (Low) is -1.8 V. Typically the circuit is powered with Vcc = GND, and Vee = - 5.2 V. A modern ECL NOR gate is Motorola's M10KH100. ECL noise immunity (0.25 V) is lower than TTL, or CMOS.			
LOGIC FAMILY SPEED/POWER O Table 1	OMPARISON			
device 7400 74LS00	74ALS00 74HC00 74C00 CD4011 M10KH1			
speed 10 ns 9.5 ns	5 ns 9 ns 50 ns 65 ns 1 ns			
power 10 mW 2 mW	1 mW 25 μW 10 nW 10 nW 25 mW			
speed = tpd (typical) power = ³	(cc ~ 1cc (per gate)) © 2002 J. Chris Perez			

Intro to Digital I	Laborato	ry		EECE1	43 Lecture 0
Technology Type xxx TTL includes different types of integrated circuits with the same logic function. These differences are based on the type and size of transistors and diodes, and resistor values. These variations primarily affect the power and speed of the					
device. the base to be fur restriction	The followin e. High Speed nctionally sin on of 1 LS de	d CMOS is no ilar. General vice. Others:	t in the TTL family. However ly HC can be used in place of AC, ACT, BCT	standard 111 er, it is design LS with a fa	L as led anout
Type	Speed	Power	Name		
	std.	std.	Standard		
H	high	high	High Power		
	low	low	Low Power		
LS	std.	low	Low Power Schottky		
S	high	high	Schottky		
ALS	high	low	Advanced Low Power Scho	ottky	
AS	v. high	std.	Advanced Schottky		4
F	v. high	high	Fast TTL		
HC	std.	v. low	High Speed CMOS		4
НСТ	std.	v. low	High Speed CMOS with TT	TL Inputs	
С	low	v. v. low	CMOS TTL Pinouts		J
				© 2002 I	Chris Perez
				© 2002 J.	

Intro to Digital	Laboratory	FFCE143 Lectur	re ()
U U			
Logic Function	nnn		
Two to fo	ur digits identifies the logic func	tion performed by the IC.	
Table 1 E	Example TTL Parts		
Part Num	ber Description		
7400	Quad 2-Input NAND	Gate	
74LS00	Quad 2-Input NAND	Gate	
74LS01	Quad 2-Input NAND	with Open-Collector Output	
74LS32	Quad 2-Input OR Gat	e	
74LS74A	Dual D-Type Positive	-Edge-Triggered Flip-Flop with	
	Preset and Clear		
74LS138/	A 3:8 Decoder/Demulti	plexer	
74LS161/	A 4-Bit Synchronous Co	ounter with Direct Clear	
74LS636	8-Bit Parallel Error D	etection and Correction Circuit	
	with 3-State Output		
		© 2002 J. Chris Perez	

Intro to Digital Laboratory			EECE143 Lecture 0		
Rev Imp suff dev Packa	vision - proveme fix. The ice becc	- r nts to an basic fui omes obso	IC that correct slight errors or glitches action of the circuit has not changed. ' olete. Possible example: 74LS161 vs'	have a letter The previous 74LS161A	
	Table	Turna	Instruments TTL Packaging	Comments	
	рр	DIP	Coromia Dual In line Backage	14 to 20 ping 0.2" contors	
	JW	DIP	Ceramic Dual-In-line Package	$24 \text{ pins} = 0.6^{\circ} \text{ centers}$	
	IT	DIP	Ceramic Dual-In-Line Package	24 pins, 0.0 centers	
	N	DIP	Plastic Dual-In-Line Package	14 to 40 pins, 0.3" or 0.6"	
	W	FP	Ceramic Dual Flat Package	14 to 24 pins, surf. mount	
	D	SOP	Small Outline Package	0.244" wide	
	DW	SOP	Wide Small Outline Package	0.410" wide, 16 or more pins	
	FK	LCC	Leadless Chip Carrier	square, surface mount only	
	Other TI packages: JD, JG, P				
				© 2002 J. Chris Perez	

Intro to Digital Labor	ratory	EECE143 Lecture 0
Experiment <u>Coals:</u> 1. Design circuits in specific combinat 2. Design circuits to minimize the num 3. Gain experience in building and trop	ional forms utilizing schematic diagrams.	Implementation
Table E1.1 – Boolean Functions		
$ \begin{split} & A = wx + w'y \\ & B = wx + w'y \\ & C = (w + x)(x' + y') \\ & D(w, x, y, z) = \Sigma(1, 4, 7, 12) \\ & E(x, y, z) = \Sigma(3, 4, 5) \\ & F = x'y'z + xyz' + xyz \\ \hline \\ & Prelabr \\ & 1. Design a circuit for each of the give \\ & A schematic diagram is the final res \\ & function. Create a truth table for each theoretical output and measured out \\ & Pre-Lab. \\ \end{split} $	AND-OR NAND-NAND NOR-NOR Decoder-OR (Decoder*-NAND) Multiplexer n Boolean functions A, B, C, D, and E in the spe ult of the design process. Use the minimum num ch function. Each truth table should include a co put. Complete the inputs and theoretical outputs	scific form. ber of ICs for each lumn for: inputs, section as part of
Table E1.2 – Boolean Functions		
	Theoretical Measured	
 Design a circuit that implements fur Design to minimize the total number 	actions D, E and F as one circuit with 3 outputs. r of ICs. Create a truth table for each function.	© 2002 J. Chris Perez

