

Standard Combinational Circuits FECE143 Lecture 1 **DC** Electrical Specifications Data sheets give "worst case" values. "Worst case" is the manufacturers guarantee of performance. The worst case can be a minimum or maximum depending on which would be less desirable. Typical values are sometimes given. These should be used for comparisons only. Worst case values should be used when designing circuits. **Voltages** A complete understanding of Boolean Algebra, and Digital Theory, can be achieved with the ideal inputs of logic 1 = 5 V, and logic 0 = ground. Real circuits provide a range of input and output voltages to allow for loss and noise. High = most positive voltage in a binary system Low = most negative voltage in a binary system Positive Logic assigns a logic 1 to the most positive voltage. © J. Chris Perez 2001

Standard Combinational Circuits	EECE143 Lecture 1	
Input Voltages		
Vil low level input voltage		
maximum voltage guaranteed to be accepted as a logic	0 at an input (min)	
Vih high level input voltage		
minimum voltage guaranteed to be accepted as a logic	1 at an input (max)	
Output Voltages		
Vol low level output voltage		
maximum output voltage with input conditions a product specifications, will establish a logic (pplied that, according to the) at the output. (max)	
Voh high level output voltage		
minimum output voltage with input conditions a product specifications, will establish a logic	pplied that, according to the 1 at the output. (min)	
	© J. Chris Perez 2001	

Standard Combinational Circuits	EECE143 Lecture 1
Logic Gate Currents	
Ideal devices require zero current to operate, yet, can supply infinite curre	ent to a load. Real devices
deviate from the ideal. TTL devices are made with NPN transistors (1 have some required input drive current. Also, a real device cannot su some limits. IC currents are always specified as being into the device current is leaving the device.	Ic = β Ib). TTL inputs will pply infinite current. There are vice. Negative signs indicate
Input Currents	
Iil low-level input sink current	
maximum current into an input when a low-level voltage is app	plied to that input.
Iih high-level input drive current	
maximum current into an input when a high-level voltage is ap	oplied to that input.
Output Currents	
Iol low-level output sink current	
maximum (manufacturer guaranteed) current into an output whe the output should be low (logic 0).	nen input conditions indicate
Ioh high-level output source current	
maximum current into an output when input conditions indicat (logic 1).	te the output should be high
Note: Although specified as a maximum, a specific devices may sink or so within the correct voltage range. (i.e. Iout = 1 mA , for Vout = 3.0 V)	ource more current and still be

© J. Chris Perez 2001

Standard Combinational Circuits

EECE143 Lecture 1

Propagation Delay

In idea logic devices, an input change, results in an immediate output change. In real devices, the output change is delayed. This delay is called propagation delay (tpd). Propagation delay is due to transistor switching, and circuit capacitance. tpd is a measure of the speed of a device. It is measured as two different values: propagation delay, high-to-low output, (tph), and propagation delay, low-to-high output, (tph). Measured with respect to the output irregardless of device function. Other propagation delay specifications related to switching from a logic value to or from a 3-state condition.

Maximum Clock Frequency fMAX

Flip-flops and other real clocked devices has a maximum clock frequency. fMAX is the highest clock speed at which the manufacturer guarantees the device will operate correctly. Note: Like many specs, an actual device may work at higher frequencies in a prototype, but, you should not exceed specs when designing for mass production.

© J. Chris Perez 2001

Standard Combinational Circuits	EECE143 Lecture 1
Power Requirements	
Real ICs consume energy to operate. This energy is not used for extern as heat. Typically, we would like this to be as small as possible.	nal useful work. It is wasted (?)
Power requirements vary the most between logic families.	
IC power consumption is measured as Icc * Vcc with outputs open.	
A 5 W power source can supply ≈ 100 74LS ICs at 50 mW each. Allow of 20 is reasonable.	wing for a margin of error, a limit
Note: Each LED in a circuit requires about the same amount of current of ICs by one for each LED.	t as an IC. Decrease the number
	© J. Chris Perez 2001

Stand	Standard Combinational Circuits			EECE143 Lecture 1	
	Decimal	4-bit binary w x y z		seven-segment a b c d e f g	G
	0	0000		1111110	Seven
	1	0001		0110000	Segment
	2	0010		1101101	Displays
	3	0011		1111001	1 7
	4	0100		0110011	Seven-segment displays are used for
	5	0101		1011011	decimal numeric displays. Seven light- emitting diodes are arranged so that all ten digits (0 - 9) can roughly be displayed
	6	0110		1011111	
	7	0111	l	1110000	0163456184
	8	1000	Ei	1111111	
	9	1001	ļ	1110011	
			•	•	© J. Chris Perez 2001

Standard Combinational Circuits	EECE143 Lecture 1		
Experiment #2: Standard Combinational Circuits			
<u>Goals:</u>			
Learn to use standard combinational & sequential ICs.			
Build and use 7-segment display circuits.			
Gain more experience understanding data book specifications: Vih, Vil			
Gain more experience testing digital circuit functions.			
Learn about simple switch inputs with pull-up or pull-d	own resistors.		
<u>Prelab:</u>			
 Design a decimal display circuit using 7-segment of from a 4-position dipswitch or a BCD switch. 	displays. Input numbers		
2. Design an 8-bit adder using 74HC ICs.			
3. Design an 8-bit comparator using 74HC ICs.			
4. Develop a test plan for each of your designs.			
 Complete the schematic diagrams to test High-spec specs. Compute values for load resistors. 	ed CMOS input voltage		
	© J. Chris Perez 2001		

Standard Combinational Circu	uits	FECE143 Lecture 1
Experiment Procedure;		
Build and test each circuit.		
Measure Vih, Vil.		
Set CADET LED indicator switc	ch to CMOS.	
High-Level Input (Vih) Test		
Assemble the HC high-lev that Iout equals data boo 5.0 V. Is the output logic Vout. Adjust Rin until I Measure Vin. Vin is Vit	el input voltage (Vih ok Iol, when Vout eq c 0? (Is the green LE LEDI-G goes off, the h Repeat for HCT an) test circuit for a 74HC04. Set Rload so uals data book Vol. Adjust Rin so Vin is D indicator (LEDI-G) on?) Measure n re-adjust so that it just turns on. d LS.
Low-level Input Voltage (Vil) Te	est	
Assemble the HC low-leve the databook Ioh, when output logic 1? (Is the re until LEDI-R goes off th Repeat for HCT and LS.	I input voltage (Vil) Vout equals data bo ed LED indicator (LI hen readjust so that in	test circuit. Set Rload so that Iout equals ok Voh. Set Rin so Vin is 0.0 V. Is the EDI-R) on?) Measure Vout. Adjust Rin t turns on. Measure Vin. Vin is Vil.
Log your Building, Testing, and	Troubleshooting pro	cess.
		D
Vih Test Circuit	Vil Test Circuit	© I Chris Perez 2001