

Introduction to Microcontrollers II	FECE143 Lecture uP3
µP Laborato	ry #2 Hints
Data Entry :	
• Use the pushbutton ro or count_br.a11 (WAI	utine from count.a11 TO and WAIT1 loops)
 Consider using Indexe entering data loops 	ed addressing for
• Store numbers to \$D0	00-\$D007
• Display numbers to out	utput PortB (\$1004)
	© J. Chris Perez 2001

Introduction to Microcontrolle	ers II	EECE143	Lecture uP3
Time	*****	******	*****
Inner	* DELAY5U.A11		
A 1º 4º 1	* AUTHORS	DATE	COMMENTS
Application 1:	* JACOBSON/SEVCIK *	2/26/90	VERSION 1.0
delay511 a11	* DESCRIPTION		
uciayJu.a11	* THIS ROUTINE GENERATES INTERNAL DELAYS IN		
	* MULTIPLES OF FIVE	(5) MICRO-SE	CONDS. THE
	* USER ENTERS A MUL	TIPLIER (16-E	BIT) INTO THE
	* X INDEX REGISTER V NUMBER	VHICH DETER	MINES THE
	* OF FIVE MICRO-SECO	OND INTERVA	LS
Deley V * 5 us	*		
Delay = $X = 5 \mu s$	* PARAMETERS		
Load X with the number	* - X REGISTER CONTA	AINS MULTIPL	JER
of times you want to delay	* - INTERRUPTS ARE NOT AFFECTED		
of times you want to delay	times you want to delay $*$ - SHORTEST DELAY IS 10 us (X < 3)		
for 5 µs.	* - RESOLUTION IS 5 us	5	
	* - MAXIMUM DELAY	IS 327680 us (X	I = 64K)
	*****	***********	*****
		© J. Chris	Perez 2001

Introduction to Microcontrollers II		EECE143 Lecture uP3
ORG \$COOO Idx #1000 JSR DELAY5U JMP \$E00A DELAY5U: DEX DEX NOP DELWT1: DEX NOP BNE DELWT1 RTS * END DELAY5U	:FOR TESTING :CALL ROUTINE TO TEST :JUMP TO BUFFALO WHEN DONE :CORRECT FOR JSR/RTS ;OVERHEAD :DECREMENT MULTIPLIER	This program uses the JSR instruction to call the subroutine: DELAY5U. The actual subroutine consists of loops of instructions that just take up computer time.
		© J. Chris Perez 2001

Introduction to Microcontrolle	EECE143 Lecture uP3
Timor	*******
Imer	* DELAY1M.A11 N*1ms Delay Routine
Application 2:	* AUTHORS DATE COMMENTS * JACOBSON/SEVCIK 2/26/90 VERSION 1.0 *
delay1m.a11	 * DESCRIPTION * THIS ROUTINE GENERATES INTERNAL DELAYS IN * MULTIPLES OF ONE (1) MILLI-SECOND. THE * USER ENTERS THE DURATION OF THE DELAY * (ms) INTO THE X REGISTER *
Delay = X * 1 ms	* PARAMETERS * - X REGISTER CONTAINS DURATION (ms) * - INTERRUPTS ARE NOT AFFECTED
Load X with the number of times you want to delay for 1 ms.	 * - SHORTEST DELAY IS 1 ms (X =1) * - RESOLUTION IS 1 ms * - MAXIMUM DELAY IS 655,36 ms (X = 0) ************************************
	* © J. Chris Perez 2001

Introduction to N	Aicrocontrollers II	EECE143 Lecture uP3
Introduction to N TEST ROUTINE * user must enter a value ORG \$COOO * change operand of next * the delay TEST ldx #100 JSR DELAY1M JMP SE00A ***********************************	Aicrocontrollers II into X, then run instruction to change FOR 100 ms DELAY ;CALL ROUTINE TO TEST ;JUMP TO BUFFALO WHEN DONE routine ;199 * 2ND LOOP = 1ms	EECE143 Lecture uP3 This program uses the JSR instruction to call the subroutine: DELAY1M. The actual subroutine consists of 2 loops of
NOP DELWT3 DECA NOP BRN DELWT3 BNE DELWT3	;SECONDARY LOOP = 1ms/199 ;BRANCH NEVER = 3 CYCLE NOP ;CONTINUE UNTIL 199>0	instructions that just take up computer time. Notice: PSHA, PULA
DEX BNE DELWT2	;# OF 1ms LOOPS ;CONTINUE UNTIL IX = 0	
PULA RTS ***********************************	*****	© J. Chris Perez 2001

Introduction to Microcontrollers II

Laboratory µP3: Count-down Timer

Pre-lab:

Design a circuit using the HC11EVB that will meet the following specs:

- 1. A two-digit BCD number will be entered.
- 2. Display the number on 7 segment displays as it counts down to zero @ 1.00Hz
- 3. Make an audible noise for the last 1 second before reaching zero.
- 4. When the number reaches zero, drive a relay closed (Output an active high signal)
- 5. Use the HC11EVb as the primary controller.
- 6. Use a minimum number of extra Ics
- 7. The two-digit bumber will be entered using an 8-position dip switch of two BCD switches.

Pre-compile all source code. Bring source code listings (on paper) and floppy disk containing the files to lab. The files should be error free at the beginning of the lab period.

Include flow charts for your source code.

© J. Chris Perez 2001