Sequential Circuits

Designing with Flip-flops and Registers.

Topics

- Flip-Flops
 - D-FF
 - JK-FF
- Shift Registers

- Design of Sequential Circuits
- Unused states
- Self Correcting Circuits

Flip-Flops

- Memory elements used in clocked sequential circuits
- Has 2 outputs: one for normal value and one for complement
- Maintain a binary state indefinitely until directed to switch states

D Flip-Flops Ex. 74HC74A Dual D FF w/ Set and Reset

2	mp	Ody			
Set	Reset	Clock	Data	Q	C
L	BH-(X	X	e H	L
H	L	X	X	oct -	Н
L	L	X	X	H*	H
H	H	15	H	H	L
H	H	1	L	L	H
H	H	L	X	No Ch	hang
H	H	H	X	No Ch	nanç
H	H	2	X	No Ch	hang

Flip-Flops, Registers & Shift Registers

JK Flip-Flops Ex. 74HC76 Dual JK FF with Set and Reset

	Outputs					
Set	Reset	Clock	and dealers	K	Q	a
L	H	X	x	x	н	L
н	Loo	X	X	X	L	н
in the main	Long Long	X	X	X	L'and	ter L'
H	H	2	L	L	No Ch	nange
н	H	12.272	Lis	H	7L	H
H	H 10		H	E	H	Ľ
н	H	2	H	H	Tog	gle
н	H	L	X	X	No Ch	nange
н	H	н	X	X	No Ch	nange
н	Н	5	X	X	No Ch	nange

Both outputs will remain low as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously.

Registers

- A group of binary storage cells for holding binary information
- Ex. A group of flip-flops
- An N-bit register has N flip-flops
- In addition to FF's a register may have combinational logic to perform data processing tasks.
- LATCH: FF's sensitive to pulse duration
- REGISTER: FF's sensitive to pulse transition

Shift Register 74HC194 4Bit Bidirectional Shift Register

mine the no-trad durant	nin nowit ogs	04 337 4 Pa	190	igur -	0.9 0.0	-	Input	8 0	8	FUNC	TION	TABI	Ko 05 ≥	Cirl	20		and a second
DATA INPUTS SD -7	- tr = 1 (a)	en "000"	20 I	Mode Select		PIE Circl	Serial Data		Parallel Data			V to HIV	Outputs		wO leva	operating	
	15 OA	000	Reset	S1	SO	Clock	SD	SA	A	B	C	D	QA	QB	QC	QD	Mode
(A 3	14 00	PARALLEL	LOV.	x	X	X	X	X	X	X	X	X	VELIN	4	L	L	Reset
ALLEL p 4	13 UB	DATA	H	н	Ĥ	5	X	X	a	b	C	d	a	b	C	d	Parallel Load
DATA INPUTS C 5 D 6	12 QC	12 QD OUTPUTS	HH	L	H H	5	××	H ^O L ³	X X	× ×	x x	x	H ÈS ≥	QAn QAn	QBn QBn	QCn QCn	Shift Right
	0- at 16/47		H	H	- L (L)	55	HL	x	××	x x	x	××	QBn QBn	QCn QCn	QDn QDn	HL	Shift Left
	V 25°C		H HT H	LXX	LXX	X L H	X X X	X X X	X X X	x x x	××××	××××	10 ggV	No C No C No C	hange hange hange	applie.	Hold
RESET	V _{CC} = PIN GND = PIN	l 16 l 8	H = high L = low I X = don' J = tran	level (evel (t care sition	(steady steady from le	dy state) (state) ow to hig	h leve	y the	a, b, QAn, the n	c, d = t OBn, 0 nost rec	he leve OCn, C cent _/	Dn = tran	the level sition of t	ate inpu of Q _A , the cloc	t at input QB, QC, k.	s A, B, C or Q _D , I	, or D, respectively, bef

Design of Sequential Circuits

- 1.Start design with state diagram
- 2. Complete state table
- 3. Develop expressions for FF inputs/outputs
- 4. Create schematic diagrams using appropriate devices

Unused States

- Unused states should be accounted for during the design stages
- Self-Correcting Circuits: Design is able to get out of unused states to some known state
 - In design, force unused states to go to known states, with desired outputs

Types of Circuits

- Sequence Recognizer: Sequential circuit that outputs a known signal only after a particular sequence of inputs are applied to the circuit
- Sequence Generator: Sequential circuit that outputs a pre-determined sequence (may or may not depend on the selected input)

Experiment #4: Flip-Flops, Registers & Shift Registers Goals:

- Learn about preset and clear inputs on sequential circuits and their use in state analysis.
- Gain experience design, assembly & test of sequential

circuits.

Prelab:

1. Design the sequential circuit for the given state diagram of Figure 4.1. Use 74HC74 or 74HC76 ICs for Flip-Flops.

[©] J. Chris Perez 2001

- 2. **Design an 8-bit bi-directional serial shift register.** Include hardware to prevent the shift register from being re-triggered less than 2 seconds after the last trigger.
 - An 8-bit word will be parallel loaded when a load switch is enabled.
 - Include a serial data input so that the data will then be shifted in the left or right directions based on a direction select input.

8 Bit word is loa	ded in parallel
Input	Output
01001001	01001001
1 Bit data is shif	ted in serially in left direction
1	10010011
0	00100110
0	01001100
1 Bit data is shif	ted in serially in right direction
1	10100110
1	11010011
0	01101001

Experiment Procedure:

Build and test each designed circuit.

Unused State Analysis: Force the sequential cicuit of Figure 4.1 in each unused state and track transitions for each input combination.